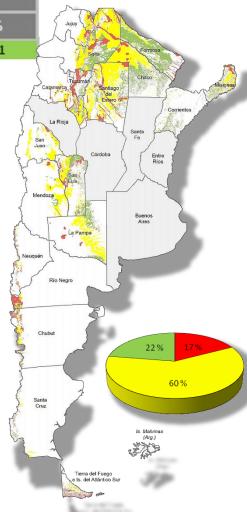
AGROBIOTECNOLOGIA CURSO 2018

Aplicación de Marcadores Moleculares en el mejoramiento genético y conservación forestal

Susana N. Marcucci Poltri

Departamento de Fisiología, Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Temas a desarrollar


- Bosques Nativos; bosques cultivados; ordenamiento territorial (usos del suelo)
- Desarrollo genómicos locales en especies forestales introducidas (exóticas) y nativas
- Características de interés forestal, mediciones, conceptos del mejoramiento genético forestal. Ej. eucaliptos
- Aplicación de Marcadores Moleculares para controlar la calidad genética:
 - -Huertos Semilleros
 - -Poblaciones de mejoramiento, razas locales
 - -Identificación clonal
 - -Resolución de situaciones problemáticas
- Aplicación de MM en mejoramiento molecular
 - -Mapeo de QTL
 - -Mapeo de asociación
 - -Selección genómica
- Aplicación de MM en conservación y manejo de especies forestales nativas: Análisis de Diversidad

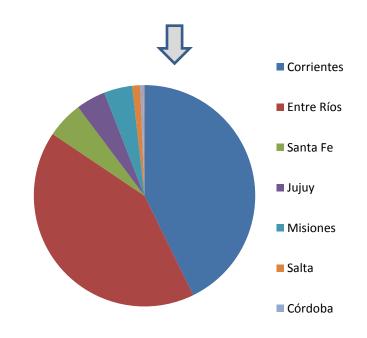
Bosques Nativos

Ley N° 26.331 de Presupuestos Mínimos de Protección Ambiental de los Bosques Nativos

Provincia	Total	Por categoría de conservación					http:/	http://obio.ambiente.gob.ar/otbn	
		Rojo (I)		Amarillo (II)		Verde (I	II)		
		ha	%	ha	%	ha	%	Jujuy	
Total	51.232.298	9.716.255	19	30.713.961	60	10.802.082	21	Salta Formosa	

- Oportunidades con especies nativas
- Varios millones de ha amarillas.
- Fondo Nacional para el Enriquecimiento y la Conservación de los Bosques Nativos.
- Ley nacional de Promoción Forestal que contempla especies nativas.
- Especies emblemáticas desde el punto de vista cultural, con gran aceptación social, vinculadas en el saber popular al «cuidado de la naturaleza».
- Falta de alternativas productivas en áreas degradados por la agricultura,.

Bosques cultivados


Oportunidades

Creciente demanda de madera de calidad.

Importante eslabón de la cadena de valor. Apreciable impacto económico en las economías regionales de base forestal.

- PMG del INTA con diversidad genética para seleccionar nuevos genotipos para una 2ª GM con mayor ganancia en velocidad de crecimiento, rectitud el fuste y calidad de la madera.
- El INTA se destaca como creador y oferente de material mejorado de las principales especies forestales cultivadas, contribuyendo a disminuir la brecha tecnológica entre las empresas y los pequeños y medianos productores-industriales forestales.

- ✓ 1.200.000 ha de Bosques Cultivados (80% Mesopotamia)
- ✓ Pinus spp 727.000 ha
- ✓ Eucalyptus spp 255.000 ha

Desarrollo de marcadores moleculares en especies introducidas y nativas: contexto

Programas informáticos para detección de

- •motivos repetidos (SSR) y diseño de primers específicos para estas regiones
- detección de SNP

Búsqueda de información "in silico" y validación "in vitro"

- •A partir de información de secuencias genómicas públicas
- •Secuencias de EST de Base de Datos públicas, proyectos genómicos

Desarrollos de novo:

- Transcriptomas
- •Genomas para algún taxon
- Genotyping By Sequencing

Desarrollo de marcadores moleculares en especies introducidas

SSR de Secuencias de EST de Base de Datos públicas

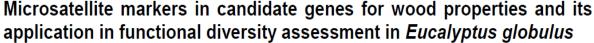
+ Transferibles a otras especies de eucaliptos

Aplicación concreta:

- -herramientas para identificación de individuos de *Eucalyptus spp*, que se incorporaron al conjunto de marcadores SSR neutros utilizados hasta el momento (EMBRAPA).
- -fiscalización (INASE)
- -estudios de diversidad genética, taxonomía, análisis de QTL y posibilidad de uso en selección genómica (GBLUP) para el cálculo más preciso de la relación de parentesco entre árboles

Desarrollo de marcadores moleculares en *Eucalyptus*

DOL 10.100 //S11293-011-0440-0


ORIGINAL PAPER

Discovery, validation, and in silico functional characterization of EST-SSR markers in Eucalyptus globulus

Cintia V. Acuña · Paula Fernandez · Pamela V. Villalba · Martín N. García · H. Esteban Hopp · Susana N. Marcucci Poltri

> Electronic Journal of Biotechnology ISSN: 0717-3458 http://www.ejbiotechnology.info

RESEARCH ARTICLE

Cintia V. Acuña · Pamela V. Villalba · Martín García ·

Pablo Pathauer¹ · H. Esteban Hopp¹,² · Susana N. Marcucci Poltri¹ ⊠

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) http://dx.doi.org/10.5424/fs/2014233-05279

Forest Systems 2014 23(3): 506-512 eISSN: 2171-9845

OPEN ACCESS

Short Communication. Transferability of microsatellite markers located in candidate genes for wood properties between Eucalyptus species

Cintia V. Acuña¹, Pamela Villalba¹, H. Esteban Hopp^{1,2} and Susana N. Marcucci Poltri^{1*} ¹ Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA Castelar), Castelar, Argentina. ² Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina

Transferencia entre 6 especies de *Eucalyptus*

sección

E. camaldulensis (8) Exsertaria

E. tereticornis (8)

sección *Latoangulatae*

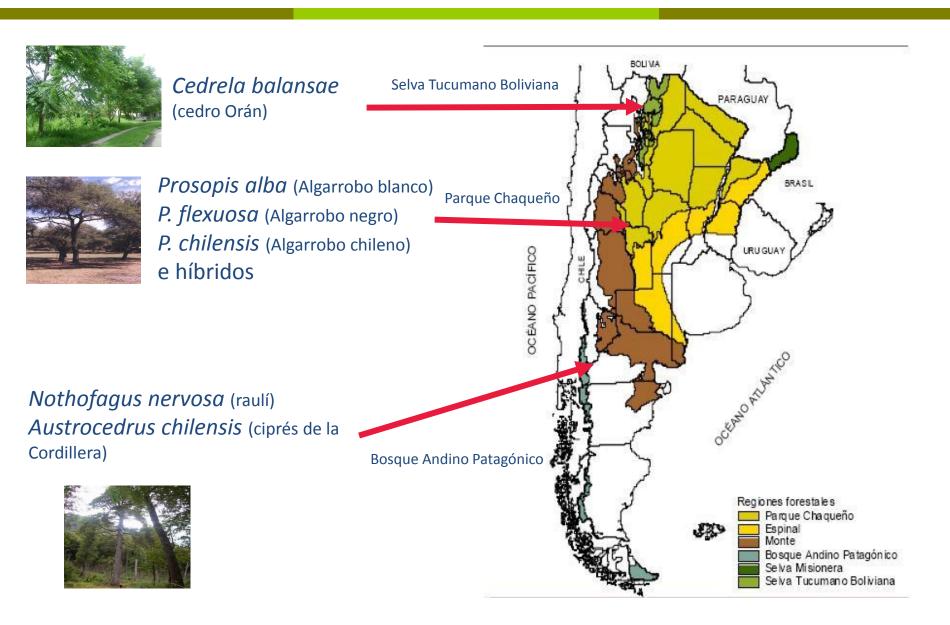
É. grandis (8)

E. saligna (7)

sección *Maidenari*a

E. globulus (8)

E. viminalis (8)



E. dunnii (8)

BS miles SSR

Desarrollo de marcadores moleculares en especies nativas (de novo)

Desarrollo de marcadores moleculares en especies nativas

herramientas para identificación de individuos
(pocos marcadores genómicos disponibles)
-para estudios de diversidad genética, conservación,
taxonomía, mapeo de QTL y cálculos de GBLUP,

- Información de transcriptomas base
- •Detección de genes candidatos de tolerancia a estrés
- SSRs, SNPs

RESEARCH ARTICLE

Open Access

Transcriptome survey of Patagonian southern beech *Nothofagus nervosa* (= *N. Alpina*): assembly, annotation and molecular marker discovery

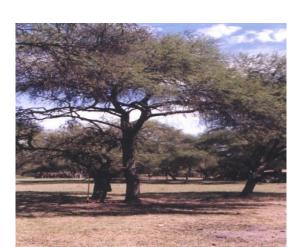
Susana L Torales^{1*}, Máximo Rivarola^{2,5}, María F Pomponio¹, Paula Fernández^{2,5}, Cintia V Acuña², Paula Marchelli^{3,5}, Sergio Gonzalez², María M Azpilicueta³, Horacio Esteban Hopp^{2,4}, Leonardo A Gallo³, Norma B Paniego^{2,5†} and Susana N Marcucci Poltri^{2*†}

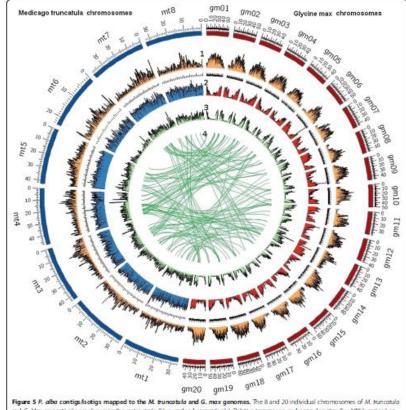
INTA: IRB, IB, EEA Bariloche

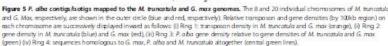
Torales et al. BMC Genomics 2013, 14:705 http://www.biomedcentral.com/1471-2164/14/705

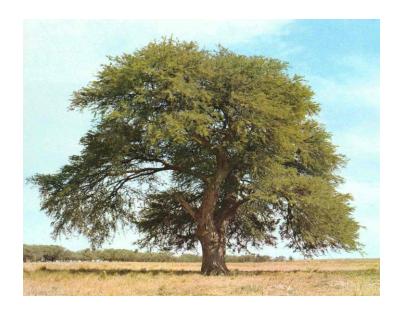
RESEARCH ARTICLE

Open Access


De novo assembly and characterization of leaf transcriptome for the development of functional molecular markers of the extremophile multipurpose tree species *Prosopis alba*


Susana L Torales^{1*†}, Máximo Rivarola^{2,5†}, María F Pomponio¹, Sergio Gonzalez², Cintia V Acuña², Paula Fernández^{2,5}, Diego L Lauenstein³, Aníbal R Verga³, H Esteban Hopp^{2,4}, Norma B Paniego^{2,5} and Susana N Marcucci Poltri²


INTA: IRB, IB, CIAP



N. antartica N. dombeyi N. pumilio N. obliqua

Ferset Systems 2+(2) eEC 0+, + page (2015) eEf 3N: 21.71-98+5 http://dx.doi.org/10.342+#6.2015242-07188 Institute Nacio nalde Investigación y Tocne le gra Agraria y Alimentaria (INIA)

RESOURCE COMMUNICATION

OPENACCESS

Characterization of functional SSR markers in *Prosopis alba* and their transferability across *Prosopis* species

María F. Pomponio¹, Cintia Acuña², Vivien Pentreath³, Diego L. Lauenstein⁴, Susana M. Poltri² and Susana Torales¹

Instituto de Recursos Biológicos (IRB), CIRN Instituto Nacional de Tecnología Agropecuaria (INTA Castelar), Argentina.
 Instituto de Biotecnología (IB), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA Castelar), CC 25, Castelar B 1712WAA, Argentina.
 Universidad Nacional de Patagonia San Juan Basco, Ciudad Universitaria Em 4 Comadoro Rivadania-Chubut, Argentina.
 Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Instituto Nacional de Tecnología Agropecuaria (INTA), Im 5,5 (5 119), Córdola, Argentina.

- P. flexuosa
- P. chilensis
- P. flexuosa x P. chilensis
- P. denudans

Desarrollo de marcadores moleculares en

Austrocedrus chilensis, Cedrela balansae

Austrocedrus 10 SSR (2044)

212.691 secuencias

2663 SSR 1202 SNP Posible diseño de un microarreglo para la especie

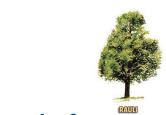
Disponibilidad de marcadores: Desarrollo /ajuste SSR

•Bases de datos públicas de EST de Eucalyptus

Eucalyptus spp 100 SSR (779)

Adaptación de marcadores Araucaria, Pinus spp, Cedrela spp

Araucaria spp 17 SSR (22)



Pinus spp 32 SSR (42)

Cedrela spp *13* SSR

Secuenciación del genoma y de transcriptomas

Nothofagus nervosa Prosopis alba Cedrela balansae **107 SSR** (3319)

19 SSR (4611) **13 SSR** (1801)

Salix spp **70 SSR** (90)

Austrocedrus 10 SSR (2044)

Desarrollo de marcadores

 http://inta.gob.ar/documentos/desarrollo-y-aplicacion-de-herramientas-degenetica-molecular-para-resolver-problemas-complejos-de-la-genetica-forestal

Desarrollo y aplicación de herramientas de genética molecular para resolver problemas complejos de la genética forestal

El INTA desarrolla, ajusta y aplica marcadores genéticos para asistir a mejoradores, productores e investigadores en la resolución de problemáticas vinculadas al mejoramiento genético y la conservación de especies forestales de interés en Argentina. En el 4to Congreso Forestal Argentino y Latimoamericano llevado a cabo en septiembre de 2013 en Iguazú, Misiones, fue presentado el siguiente trabajo de investigación:

Por

Autores:

Susana Noemi MARCUCCI POLTRI, Susana Leonor TORALES, Verónica, EL MUJTAR, Cintia Vanesa ACUÑA, CAROLINA SOLIANI, Noga ZELENER, Patricia Griselda SCHMID, Maria Florencia POMPONIO, PAULA MARCHELLI, Maria Virginia INZA, Georgina SOLA, Maria Cristina SOLDATI, PAMELA VICTORIA

VILLALBA, MARÍA VERONICA ARANA, JORGE ALFREDO BOZZI, MARTIN NAHUEL GARCIA, Maria Marta AZPILICUETA, Maria Carolina MARTINEZ, Juan Gabriel RIVAS, Diego LOPEZ LAUESTEIIN, Andrea COSACOV, Carmen VEGA, Eduardo Pablo CAPPA, Leonardo Alfredo ORNELLA, MARIO JUAN PASTORINO, Pablo PATAHUER, Juan Pablo DIEZ, Silvia Cora CORTIZO, Teresa CERRILLO, Maria Elena GAUCHAT, Gustavo Hernán RODRIGUEZ, Hugo Enrique FASSOLA, Norberto Manuel PAHR, Mauro SURENCISKI, Gustavo Pedro Javier OBERSCHELP, Leonel HARRAND, Juan Adolfo LOPEZ, Luis Fernando FORNES, Anibal VERGA, Martin Alberto MARCO, Horacio Esteban HOPP y Leonardo Ariel GALLO

Marcadores de alto desempeño disponibles Eucalyptus

A flexible multi-species genome-wide 60K SNP chip developed from pooled resequencing of 240 *Eucalyptus* tree genomes across 12 species

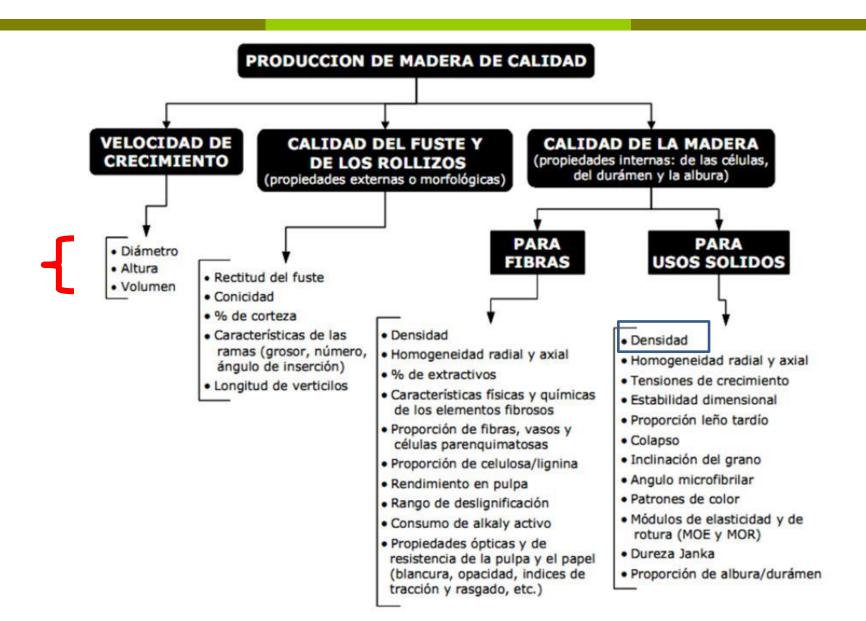
Orzenil B. Silva-Junior^{1,2}, Danielle A. Faria³ and Dario Grattapaglia^{2,3}

GBS
(GENOTIPIFICACIÓN POR SECUENCIACIÓN)
(Ajustando protocolo *E. dunnii,* Aguirre N. 2015)

Particularidades de los árboles

Largos tiempos generacionales: floraciones tardías, maduración lenta, ciclos reproductivos largos

Evaluaciones en general tardías


Alta depresión por endocría

Distintos grados de **dificultad para multiplicación vegetativa** (enraizamiento) y para regeneración de tejidos

Biotecnología:

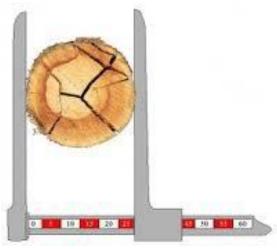
- caracterización de diversidad genética utilizando marcadores moleculares
- •genómica, mapeo genético y la selección asistida por marcadores
- •GM
- Micropropagación

Características de interés

Características de crecimiento

Altura

Altura total (hT): distancia vertical entre el nivel del suelo y el extremo superior del árbol.


hipsómetro Haga

Diámetro a la altura del pecho (DAP): es el diámetro del árbol a 1,30m de altura sobre el nivel del suelo

La huincha o cinta diamétrica esta graduada de tal manera que cada centímetro de diámetro equivale a 3,14159 cm. de longitud, lo que permite la lectura directa del diámetro del árbol en función de la circunferencia

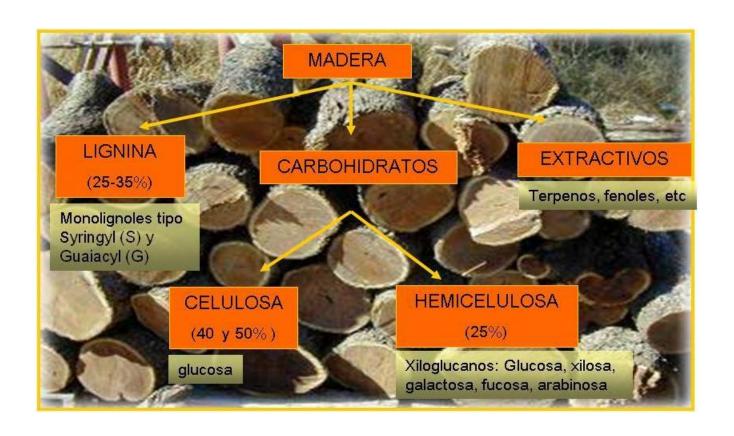
Calidad de la madera:

Métodos no destructivos utilizando penetrómetro, ultrasonido, barreno hueco (tarugos), NIR

<u>Densidad de madera</u>: Pilodyn o Penetrómetro: funciona mediante el disparo de una aguja de acero (Ø 2,5 mm. o Ø 2,0 mm) sobre la madera con una energía uniforme. La profundidad de penetración se lee en una escala.

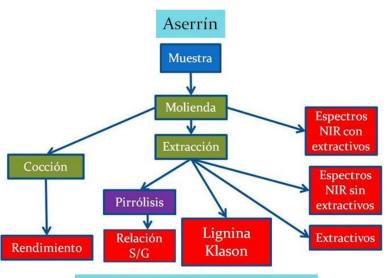
<u>Dureza</u>: Depende de su densidad, edad, estructura y si se trabaja en sentido de sus fibras o en el perpendicular.

Tensiones de crecimiento: Índice de rajado



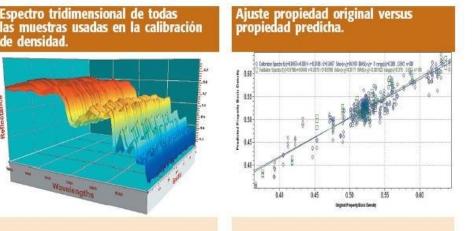
Juan Adolfo López y Augusto Javier López

Calidad de la madera: propiedades químicas (pulpa de papel)


Métodos no destructivos para estimar: Espectros de NIR (Near Infrared Reflectance)

Densidad

Lignina: total, Klason, S/G


Extractivos: totales, etanólicos, acuosos

Rendimiento pulpable)

Tarugos para análisis químicos

Mejoramiento genético forestal

El mejoramiento genético forestal aplica los principios básicos de la genética al manejo de las especies forestales.

Objetivos fundamentales: aumentar la productividad y la adaptabilidad de dichas especies, así como conservar a largo plazo la diversidad genética existente.

Adaptación a estrés: biótico-abiótico

Actividades fundamentales:

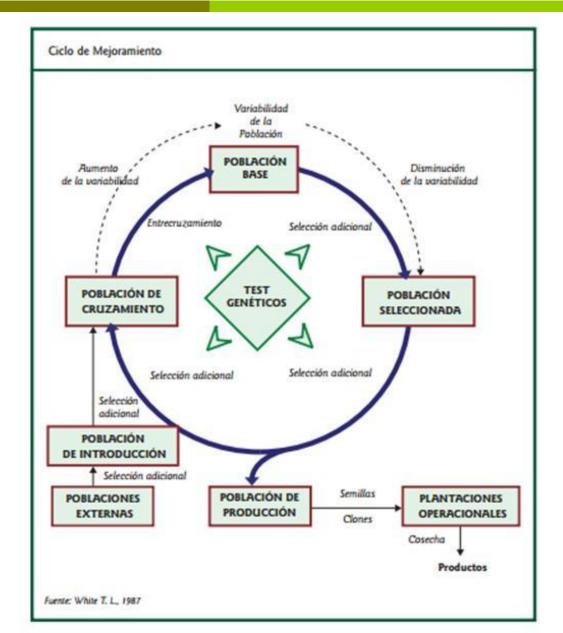
Selección

Propagación masiva del material mejorado

Conservación de los recursos genéticos

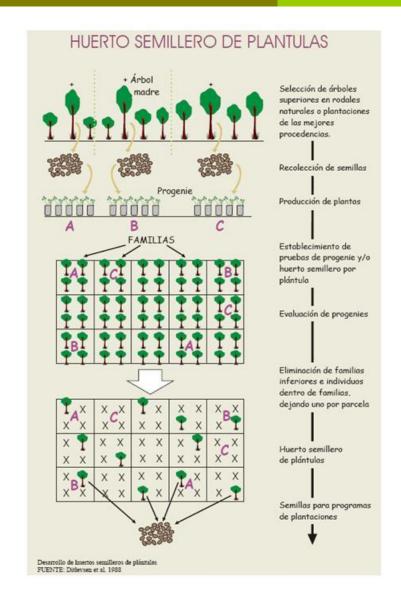
Mejoramiento genético forestal

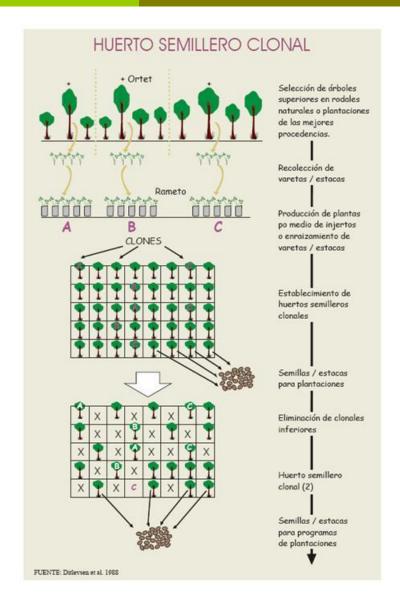
Información necesaria:


- 1. el objetivo del mejoramiento:
 mejorar la producción de madera; el volumen de trozos aserrables;
 incrementar la cantidad y calidad de la pulpa; desarrollar resistencia a
 enfermedades y plagas; etc.
- 2. el grado y patrón de variación

A mayor variación genética y mayor control ejercido por los genes sobre los caracteres de interés, mayor será la posibilidad de obtener un mejoramiento de éstos.

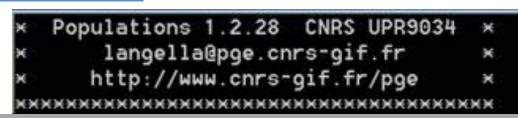
3. la biología de la especie


Tipo de floración, modo de polinización predominante, habilidad de enraizar o formar injertos, edad de madurez sexual,

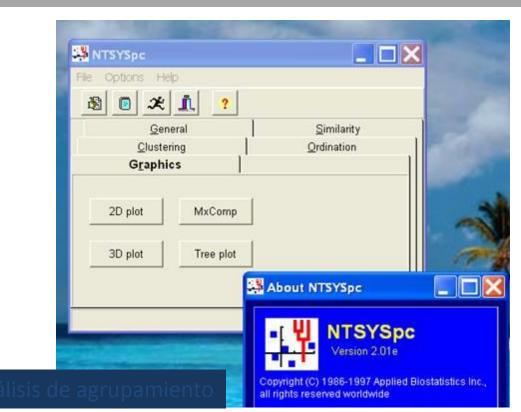

Ciclos del mejoramiento genético

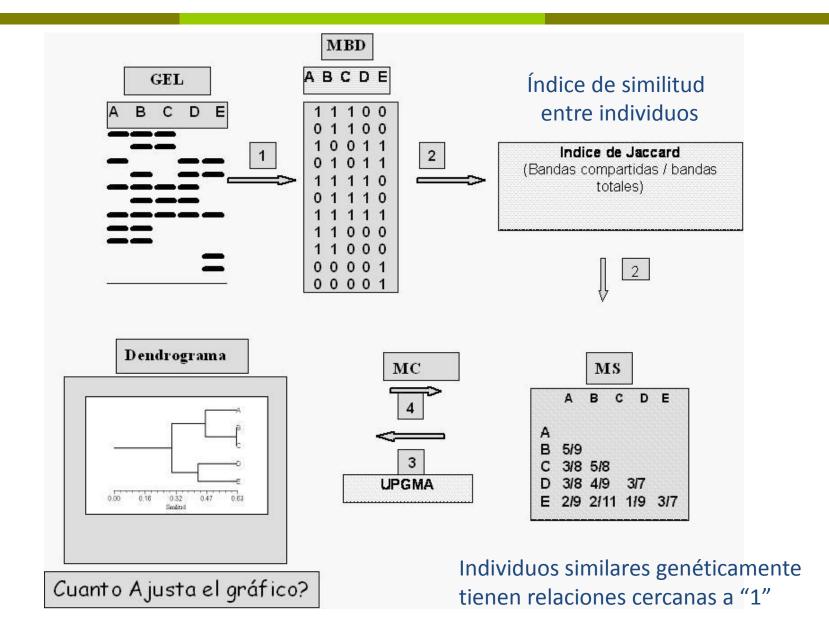
- Ciclos sucesivos de selección y cruzamiento
- •Especies introducidas implica varias instancias de selección del material

Producción de semilla mejorada: Huertos Semilleros


Análisis básicos para evaluar diversidad genética utilizando datos moleculares

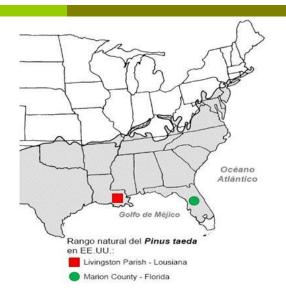
http://biology-assets.anu.edu.au/GenAlEx/Welcome.html




Riqueza alélica SSR

Matriz de distancia SSR (1-prop alelos compartidos)

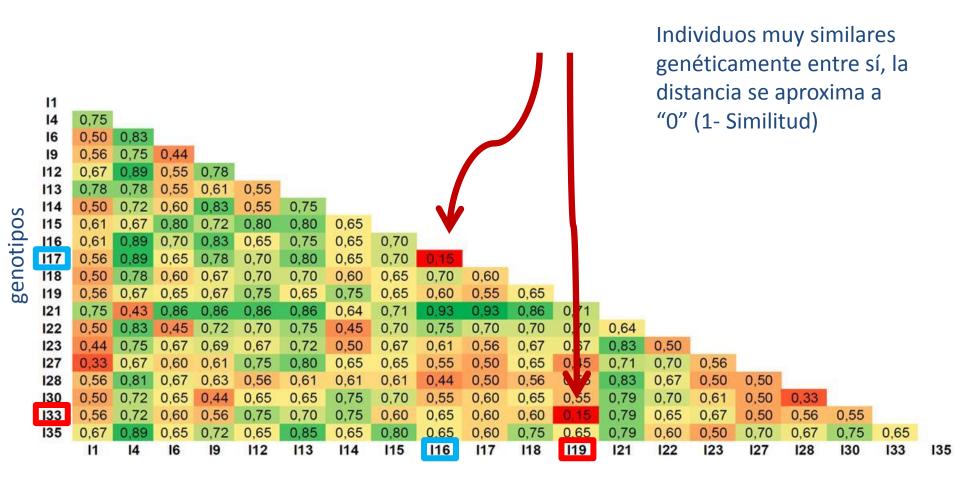
Similitud entre individuos (marcadores dominantes)



Determinación de la Diversidad Genética en Huertos Semilleros Clonales de *Pinus taeda* L.

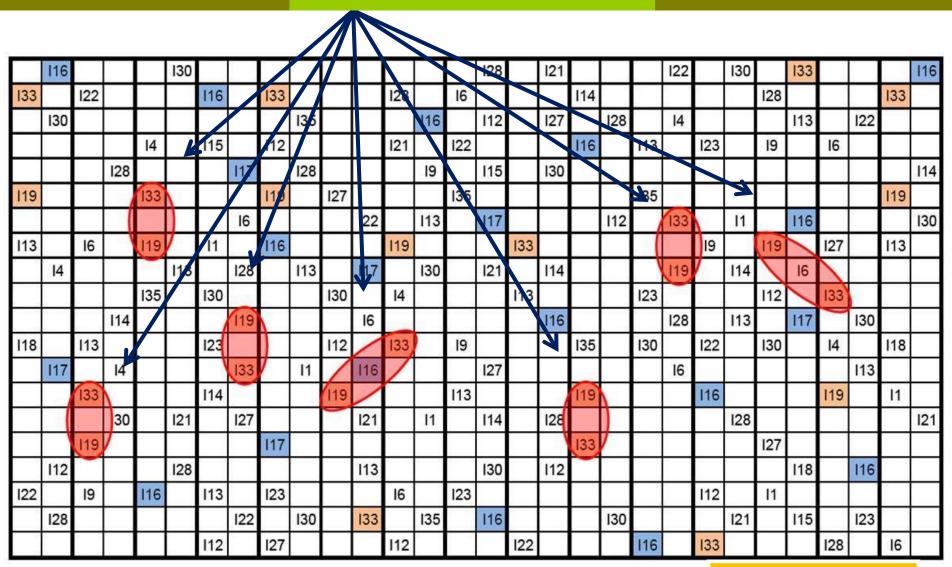
Poblaciones

- HSC 1993
- HSC 1994
- HSC 1995
- HSC 1999
- HSC 2001
- HSC Bulk 2001


N total=138 árboles (108 genotipos distintos) 12 SSR

Crecimiento (DAP y HT) y rectitud de fuste Ramas (grosor y ángulo de inserción) Copa

Matriz de Distancia genética para la detección de pares de "individuos críticos" en el HSC



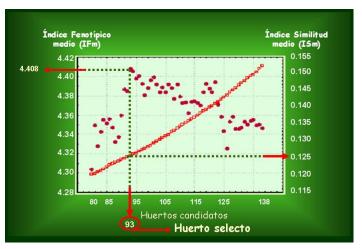
genotipos

"HSC 1995"

Plano de implantación y pares de árboles críticos por cercanía física y genética

Detección de pares de "individuos críticos"

Selección de Huertos Semilleros Eucalyptus dunnii

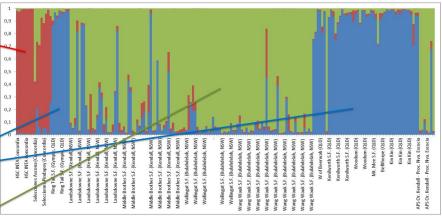

Selección de Huerto semillero de plántulas a partir de ensayos de orígenes y progenies

3.9% >I.Fenotípico 6% < I.Similitud

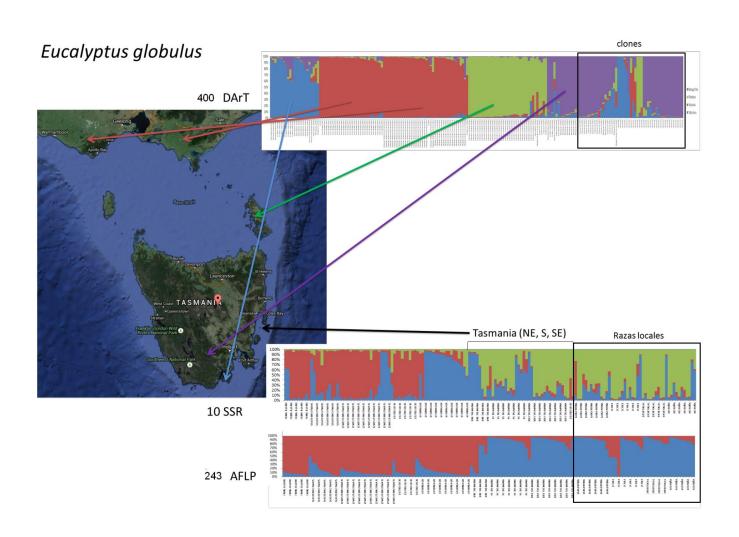
Zelener et al. 2005. Tree Physiol. 25: 1457-1467

AFLP SSR (conservación riqueza alélica)

Selección de un Huerto semillero clonal de a partir de selecciones locales


1/3 de individuos: Conservación del 95% los alelos Mínima similitud genética

> Marcucci Poltri et al, 2003 Tree Physiology


Determinación de procedencias de razas locales adaptadas

Eucalyptus grandis 400 DART

Determinación de procedencias de razas locales y clones

Identificación clonal (descriptores auxiliares inscripción en INASE)

Clones de *Eucalyptus grandis* e híbridos interespecíficos GC, GD y GT

En Eucalyptus grandis

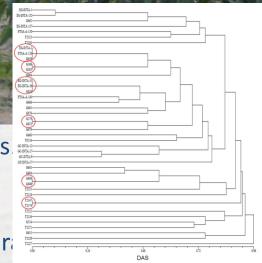
Identificación Genética de Clones Utilizando Microsatélites

Torales et al 2005 IDIA XXI, Villalba 2010, EEA Concordia

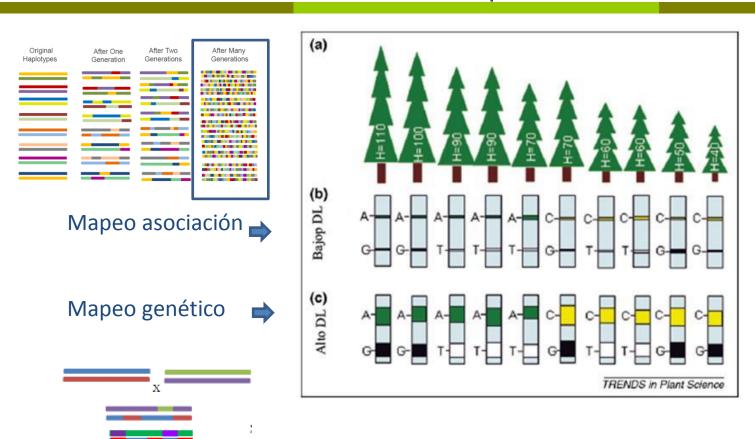
Rivas JG, Acuña CV, Villalba PV, García A, Langan M, Moyano J, Biaus C, Losada ML, Krummel L, Loray MA, Martínez MC, Marcucci Poltri S, Pagano E, Cortizo S, Vicario AL.

RECUPERACIÓN DE LA IDENTIDAD GENÉTICA DE CLONES DE *Eucalyptus grandis* E HÍBRIDOS MEDIANTE MARCADORES MOLECULARES DE ADN

Acuña C1, Rivas JG1, Harrand L2, Villalba P1, Marcó M2, Marcucci Poltri, S1 1 - Instituto de Biotecnología, INTA Castelar; 2 - EEA Concordia, Entre Ríos, Argentina. acuna.cintia@inta.gob.ar


Identidad de 270 rametos pertenecientes a 44 clones *E. grandis* e híbridos

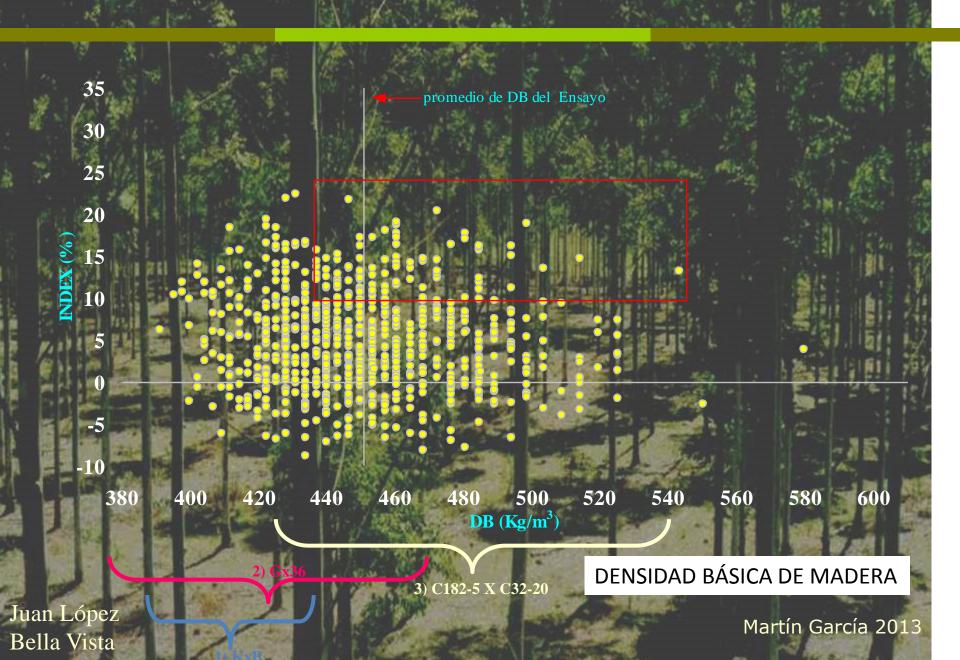
Ensayo implantado en Colón (Entre Ríos) en 2011 (EEA Concordia y empresa Comercio y Desarrollo). Clones correspondientes a material comercial o precomercial de diferentes empresas: Forestadora Tapebicua (FTSA), Vivero Paul Forestal (G), Pomera Maderas (T), vivero Loreto Forestal (EG-INTA) y de la EEA Concordia de INTA (GC y GT-INTA).



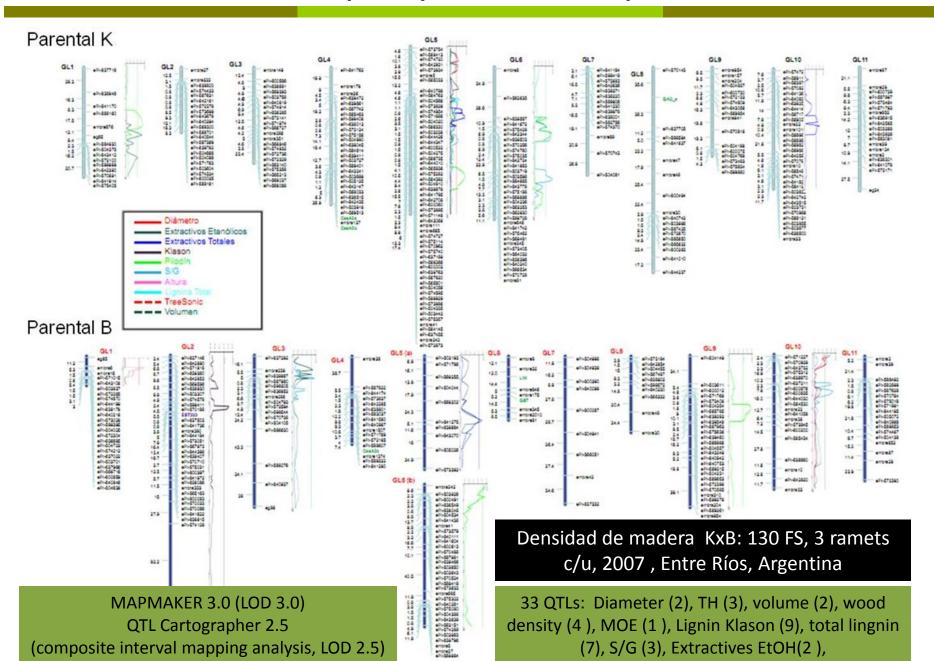
-se re-estableció la identidad perdida de estos individuos/clones.

- -se recuperó el ensayo a campo
- -existencia de problemas en los rótulos originales
- -distancia genética entre los individuos de la población de mejora

Mapeo de QTL para investigar la base genética de la formación de la madera para fines industriales y producción de energía del cultivo de eucaliptos



•Y=G+Q \(\text{o} \) P/K+E


Y=fenotipo,
G=genotipo,
Q= estructura,
K =relaciones

Análisis de recombinación genética en cada parental: cosergregación del carácter y marcador

Mapeo de QTL en *E. grandis*

QTL: mapeo población biparental

Tree selection including several QTLs related to growth and wood quality traits in Eucalyptus grandis

Martín García^{12*}; Eduardo Cappa ²³; Pamela Villalba ¹²; Cintia Acuña ¹; María Martínez ¹; Javier Oberschelp ⁴; Leonel Harrand ⁴; Juan López ⁵; Janet Higgins ⁶; Martín Marcó⁴; Norma Paniego¹; Susana Marcucci Poltri ¹; Mauro Surenciski ⁴; Esteban Hopp ¹

												No. of the last of	
Physical properties	Wood density	QTL1	QTL2	QTL3	QTL4							一、海岛	
r nysicar properties		(R ² =0.131)	$(R^2=0.083)$	$(R^2=0.290)$	$(R^2=0.068)$							Samuel Street	ALC:
	Number of individuals	38	70	50	34							BASE T	Constant of
	Modulus of elasticity (MOE)	QTL											Sec. 1
		(R ² =0.094)											
	Number of individuals	51											A
											NEW Y		24
Growth	Tree heigth (TH)	QTL1	QTL2	QTL3							100		- 3
		(R ² =0.178)	$(R^2=0.098)$	(R ² =0.109)								1	- 3
	Number of individuals	7	56	14							Ages	The same	
	Diameter breast height (DBH)	QTL1	QTL2								1	1	To the
		$(R^2=0.228)$	$(R^2=0.065)$									14	1
	Number of individuals	2	7								8		16. 2
	Volume (VOL)	QTL1	QTL2										
		$(R^2=0.085)$	$(R^2=0.223)$									700	
	Number of individuals	57	62								(2)	100	NO.
											20		
	Klason lignin	QTL1	QTL2	QTL3	QTL4	QTL5	QTL6	QTL7	QTL8	QTL9	0.70	1	
Chemical properties		$(R^2=0.006)$	$(R^2=0.005)$	$(R^2=0.002)$	(R ² =0.204)	$(R^2=0.002)$	(R ² =0.005)	$(R^2=0.003)$	$(R^2=0.094)$	(R ² =0.039)	Section 1		Table 1
	N° individuals with high content	38	60	66	69	5	57	30	51	69	998		1
	N° individuals with low content	57	61	63	62	9	50	31	62	37			
	Total lignin	QTL1	QTL2	QTL3	QTL4	QTL5	QTL6	QTL7			1000		1
	_	(R ² =0.052)	$(R^2=0.136)$	$(R^2=0.023)$	$(R^2=0.020)$	$(R^2=0.020)$	(R ² =0.029)	$(R^2=0.030)$			2000	1000	100
	N° individuals with high content	48	68	20	3	2	48	5			-33		No.
	N° individuals with low content	46	62	8	9	2	37	5			RI SI		A 8
	Lignin composition (S/G)	QTL1	QTL2	QTL3							11100		4 3
		(R ² =0.164)	$(R^2=0.083)$	$(R^2=0.213)$							7.1		
	N° individuals with high ratio S/G	68	3	54							1000		
	Ethanolic extractives	QTL1	QTL2								199		
	Ethanone extractives	(R ² =0.105)	$(R^2=0.120)$								2.70		
	N° individuals with high content	47	3								111111111111111111111111111111111111111		
	N° individuals with low content	53	9										

Phytozome E. grandis' genome

E. grandis' QTL map

QTL's flanking DArT markers DArT's positions

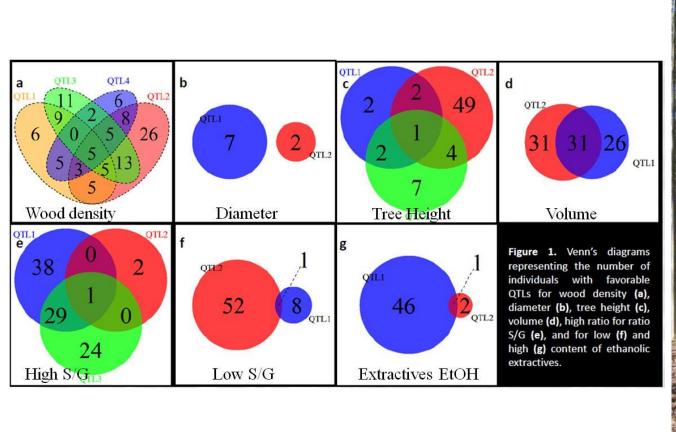
biomaRt R package GO annotation

				Lignin	Cellulose			
QTLs	Scaffold	Genes	GO id's	Biosynthesis	and xylan	Peroxidases	SDRLK	
Wood density	1,5,6,9	299	445	nd	1	nd	4	
MOE	6	26	81	nd	nd	nd	nd	
TH	5,6	355	518	nd	3	2	23	
DBH	6	168	283	nd	4	nd	13	
VOL	5,6	330	485	nd	4	1	19	
Klason	2,3,4,5,6,7,8	340	563	5	1	nd	nd	
Lig-Tot	2,5,6,7	353	505	nd	1	nd	4	
s/G	2,6	217	294	nd	2	1	4	
Ext_et	5	67	71	nd	nd	nd	nd	
Total		1,581 *	2,560 *	5	6 *	4 *	29 *	

ARTICLE

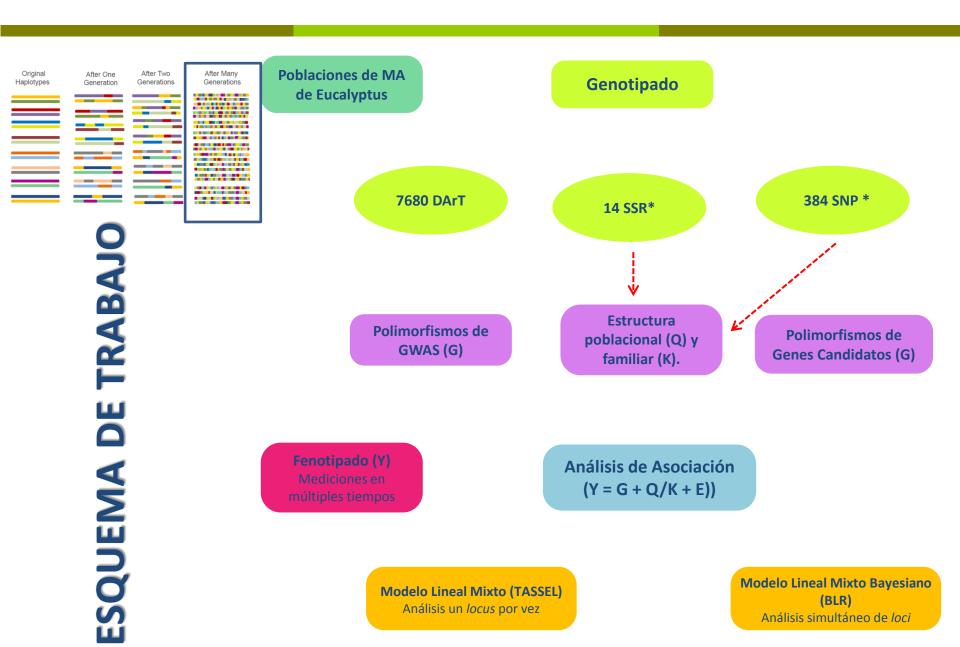
2014 doi:10.

OPEN doi:10.1038/nature13308


The genome of Eucalyptus grandis

Alexander A. Myburg^{1,2}, Dario Grattapaglia^{3,4}, Gerald A. Tuskan^{5,6}, Uffe Hellsten⁵, Richard D. Hayes⁵, Jane Grimwood⁷, Jerry Jenkins⁷, Erika Lindquist⁵, Hope Tice⁵, Diane Bauer⁵, David M. Goodstein⁵, Inna Dubchak⁵, Alexandre Poliakov⁵, Eshchar Mizrachil^{1,2}, Anand R. K. Kullan^{1,2}, Steven G. Hussey^{1,2}, Desre Pinard^{1,2}, Karen van der Merwe^{1,2}, Pooja Singh^{1,2}, Ida van Jaarsveld⁸, Orzenil B. Silva-Junior⁹, Roberto C. Togawa⁹, Marilia R. Pappas³, Danielle A. Faria³, Carolina P. Sansaloni³, Cesar D. Petroli³, Xiaohan Yang⁶, Priya Ranjan⁶, Timothy J. Tschaplinski⁶, Chu-Yu Ye⁶, Ting Li⁶, Lieven Sterck¹⁰, Kevin Vanneste¹⁰, Florent Murat¹¹, Marçal Soler¹², Hélène San Clemente¹², Naijib Saidil², Flua Cassan-Wang¹², Christophe Dunand¹², Charles A. Hefer^{8,13}, Erich Bornberg-Bauer¹⁴, Anna R. Kersting^{14,15}, Kelly Vining¹⁶, Vindhya Amarasinghe¹⁶, Martin Ranik¹⁶, Sushma Naithani^{17,18}, Justin Elser¹⁷, Alexander E. Boyd¹⁸, Aaron Liston^{17,18}, Joseph W. Spatafora^{17,18}, Palitha Dharmwardhana¹⁷, Rajani Raja¹⁷, Christopher Sullivan¹⁸, Elisson Romanel^{19,20,21}, Marcio Alves-Ferreira²¹, Carsten Külheim²², William Foley²², Victor Carocha^{12,23,24}, Jorge Paiva^{23,24}, David Kudrna²⁵, Sergio H. Brommonschenkel²⁶, Giancarlo Pasquali²⁷, Margaret Byrne²⁸, Philippe Rigault²⁹, Josquin Tibbits³⁰, Antanas Spokevicius³¹, Rebecca C. Jones³², Dorothy A. Steane^{32,33}, René E. Vaillancourt³², Brad M. Potts³², Fourie Joubert^{2,8}, Kerrie Barry⁵, Georgios J. Pappas Jr³⁴, Steven H. Strauss¹⁶, Pankaj Jaiswal^{17,18}, Jacqueline Grima-Pettenati¹², Jérôme Salse¹¹, Yves Van de Peer^{2,10}, Daniel S. Rokhsar⁵ & Jeremy Schmutz^{5,7}

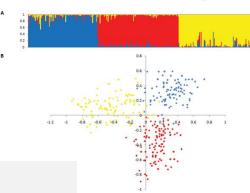
+/- 0.5Mbp

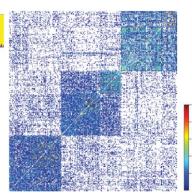

biosíntesis de lignina, celulosa y xilano, peroxidasas y S-domain receptor-like kinasa (SDRLK)

Individuos portadores de QTL favorables (9 características)

Mapeo por Asociación (genoma amplio o "GWAS")

QTL y GWAS Eucalyptus ssp



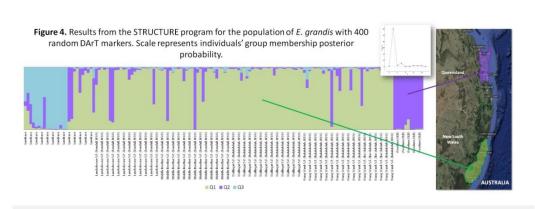

Impacts of Population Structure and Analytical Models in Genome-Wide Association Studies of Complex Traits in Forest Trees: A Case Study in Eucalyptus globulus

Eduardo P. Cappa , Yousry A. El-Kassaby , Martín N. Garcia, Cintia Acuña, Nuno M. G. Borralho, Dario Grattapaglia,

Susana N. Marcucci Poltri

Published: November 25, 2013 • DOI: 10.1371/journal.pone.0081267

- *E. globulus* (*n* = 303), 2.364 (DArT)
- Crecimiento y características de madera
- GLM sin incluir estructura ni familias, vs 5 combinaciones Unified Mixed Model (UMM)
 - **UMM** fue el mejor
 - 18 asociaciones entre marcadores y características
 - 16 para crecimiento (DAP) +2 para S/G ratio (chromosome 10, 1 Mbp del gen ferulate 5-hydroxylase (F5H)

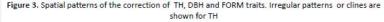

QTL y GWAS E. grandis

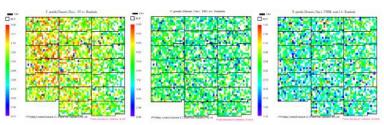
Association mapping study for wood quality traits in Eucalyptus grandis

First Latin-American Conference on Plant Phenotyping and Phenomics for Plant Breeding November 30, December 1 & 2, 2015 Universidad de Talca, Talia, Crille

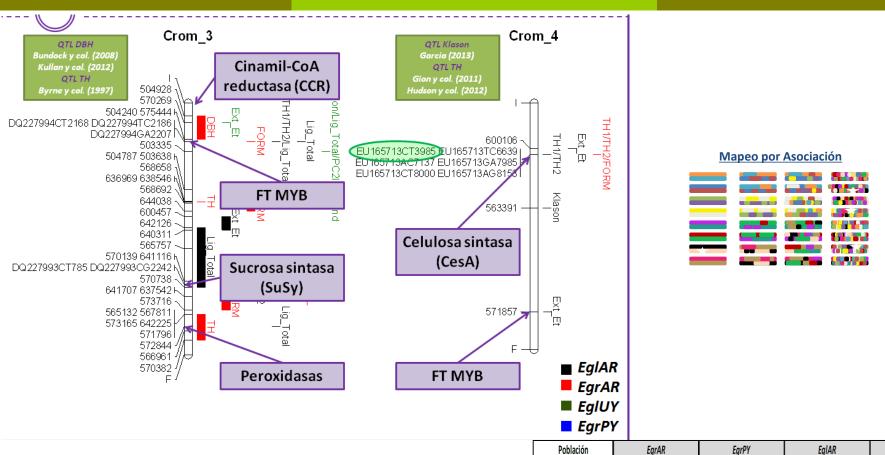
Pamela V. Villalba^{12*}, Janet A. Higgins^{3*}, Natalia C. Aguirre^{12*}, Cintia V. Acuña¹, Martín Garcia¹², Eduardo P. Cappa²⁴, Javier Oberschelp⁵, Leonel Harrand⁵, Juan López⁶, Martín Marcó⁵, H. Esteban Hopp¹⁷, Norma Paniego¹, Susana Marcucci Poltri¹.

188 OP E. grandis - 3003 DArT - 160 SNP polimórficos, productividad y forma del fuste


78 MTAs DArT


- 18 DArT DBH
- 14 DArT FORM
- 33 DArT TH
- 13 DArT VOL

7 MTAs SNP


- 1 SNP DBH
- 2 SNP FORM
- 2 SNP TH
- 2 SNP VOL

- •85 asociaciones (Benjamini and Hochberg, 1995)
- •1.930 genes in silico (ventana de 1,2 kb del genoma
- •53 genes relacionados a la síntesis de celulosa y lignina (e.g. CesA, Susy, CCR and COMT genes), síntesis de peroxidasa y laccasa, factores de transcripción (MYB), MADS-Box y genes SDRLK genes (S-domain-Receptor-Like)

QTL y GWAS Eucalyptus ssp

Las estrategias de mapeo por asociación permitieron detectar en E. globulus y E. grandis, 243 marcadores (92 SNP y 146 DArT) asociados significativamente a varios caracteres

Tesis doctoral Pamela V. Villalba, 2016

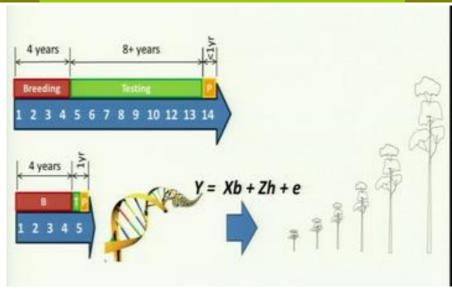
Población	EgrAR	EgrPY	EglAR	EglUY
Especie	E.grandis	E.grandis	E.globulus	Eglobulus
Tipo de material	OP	Clonal	OP	OP
País	Argentina	Paraguay	Argentina	Uruguay
N° total de árboles	2027	8485	4200	19380
N° de árboles ensayados	188	121	134	169
N° de familias OP	132	•	70	129
N° de árboles por familia	Desde 1 a 3.	•	Desde 1 a 2.	Desde 1 a 8.
Nº de muse de maio	13 orígenes Australianos y	Procedencia desconocida.	8 orígenes Australianos y 1	8 orígenes Australianos y 2
N° de procedencias	3 ensayos locales.	Procedencia desconocida.	ensayo local.	ensayos locales.

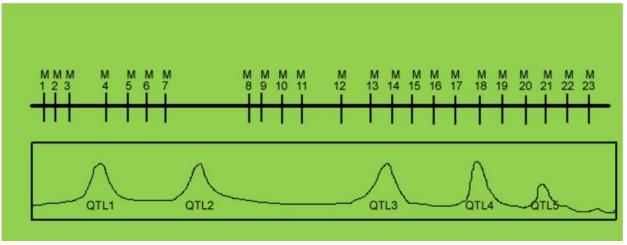
The Genome Analysis Centre™

Screening of 19.8 Mb of genomic sequence surrounding DArT markers associated to wood quality traits in Eucalyptus globulus

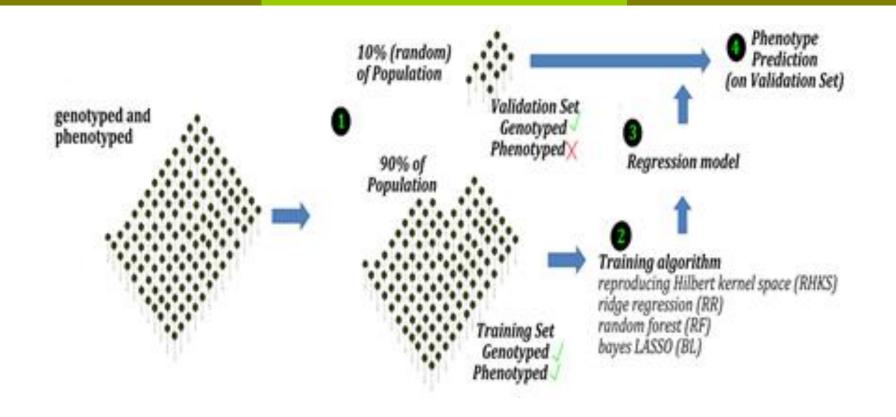
Recursos Genéticos Biotecnologia

Pamela V. Villalbala, Janet Higgins, Natalia C. Aguirrela, Cintia V. Acuñal, Martín Garciala, Eduardo P. Cappala, María C. Martinezl, Pablo Pathauer, H. Esteban Hoppla, Dario Grattanaglia, Norma Paniegol, Susana Marcucci Poltril


44 asociaciones positivas:
20 Lignina total
7 lignina KLASON
3 S/G.
14 ET EXT
33 DArTs mapearon en posición única


~			
Gene	Chromosomes	Myburg et al. Classification	Annotation
Eucgr.A02481	Chr_1	Interpro domain in 968 genes unique to eucalyptus	Plant disease resistance response protein
Eucgr.A02482	Chr_1	Interpro domain in 968 genes unique to eucalyptus	Plant disease resistance response protein
Eucgr.A02484	Chr_1	Interpro domain in 968 genes unique to eucalyptus	Plant disease resistance response protein
Eucgr.B01294	Chr_2	Interpro domain in 968 genes unique to eucalyptus	Cullin, N-terminal
Eucgr.B01297	Chr_2	Interpro domain in 968 genes unique to eucalyptus	Cullin, N-terminal
Eucgr.801359	Chr_2	Interpro domain in 968 genes unique to eucalyptus	Pentatricopeptide repeat
Eucgr.B01384	Chr_2	Interpro domain in 968 genes unique to eucalyptus	eRF1 domain 3
Eucgr.B01386	Chr_2	Interpro domain in 968 genes unique to eucalyptus	Ubiquitin supergroup
Eucgr.C01724	Chr_3	Interpro domain in 968 genes unique to eucalyptus	Toll-Interleukin receptor
Eucgr.C02078	Chr_3	Interpro domain in 968 genes unique to eucalyptus	Nonaspanin (TM9SF)
Eucgr.C03234	Chr_3	Interpro domain in 968 genes unique to eucalyptus	ThiJ/PfpI
Eucgr.D00403	Chr_4	Interpro domain in 968 genes unique to eucalyptus	Protein of unknown function DUF594
Eucgr.D00958	Chr_4	Interpro domain in 968 genes unique to eucalyptus	Heat shock protein DnaJ, N-terminal
Eucgr.D00969	Chr_4	Interpro domain in 968 genes unique to eucalyptus	Zinc finger, RING-type
Eucgr.D00977	Chr_4	Interpro domain in 968 genes unique to eucalyptus	Protein of unknown function DUF794, plant
Eucgr.801369	Chr_2	MADS and K-box / Interpro domain in 968 genes unique to eucalyptus	Transcription factor, MADS-boxEgrAGLS2
Eucgr.B01964	Chr_2	MYB	EgrMYB23
Eucgr.C02096	Chr_3	MYB	EgrMYB44
Eucgr.D02099	Chr_4	MYB	EgrMYB62
Eucgr.G01977	Chr_7	predicted cellulose and xylan genes	IRX10
Eucgr.G03380	Chr_7	predicted cellulose and xylan genes	CESA

60 genes (síntesis de celulosa y xilano: CesA y las glicotransferasas; factores de transcripción MYB, genes MADS y K-Box, con genes de la síntesis de terpenos, de peroxidasas y lacasas)



Selección genómica

Selección genómica

- >Marcadores
- >Heredabilidad
- >relación entre pob de entrenamiento y validación > precisión

Selección Genómica en E. dunnii

- Buenas características de madera para producción de pulpa y bioenergía:
- Menor suceptibilidad a bajas temperaturas que E. grandis
- Rápido crecimiento
- · Rectitud de fuste
- Densidad de la madera superior a la de E. grandis.

- Pulpa para papel
- Bioenergía
- Cultivo multi propósito
- Madera sólida: tablas (mejorando la susceptibilidad al rajado)

 Gran variación entre individuos

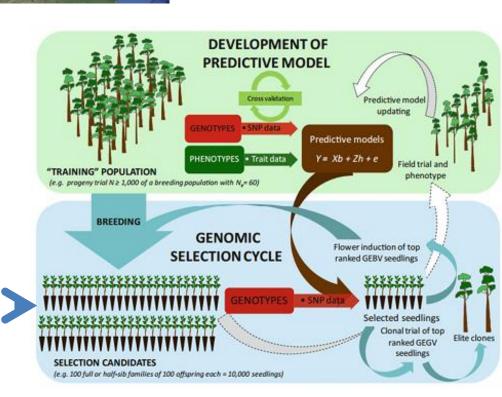
- ✓ Heredabilidad: 0.48 ±0.21 (López, 2014)
- ✓ Es posible su mejoramiento genético

Selección Genómica en E. dunnii

Ubajay 1500 árboles (1991) Ensayos de orígenes/progenies de E. dunnii (1991-92)

60 progenies salvajes (CSIRO) v 20 locales

Wanda (Mnes.)
Istueta (Mnes.)
El Alcazar (Mnes.)
Cerro Azul (Mnes.)
Bella Vista (Ctes)
Yuquerí (E.R.)
Ubajay (E.R.)
Concepción del Uruguay (E.R.)
Campana (Bs. As.)
Del Valle (Bs. As.)


Índice de Rajado Productividad NIR madera

EUCHIP60K GBS

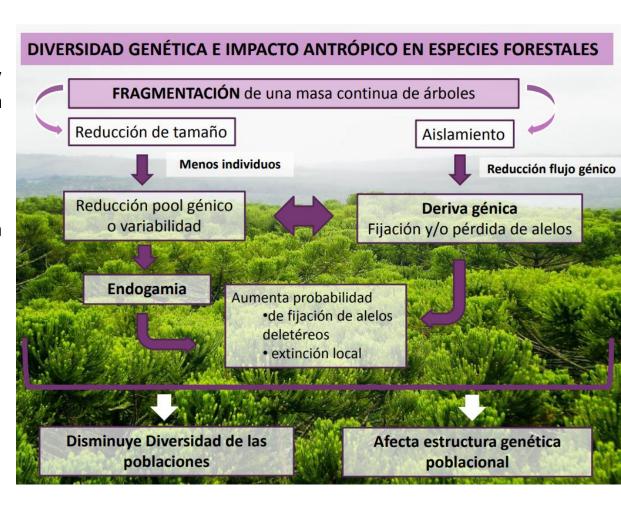
Ubajay 317 árboles HSP

INTA Castelar

INTA Castelar

Diversidad genética de Pino Paraná (Araucaria angustifolia) en la Selva Paranaense: Análisis genómico mediante marcadores moleculares AFLPs

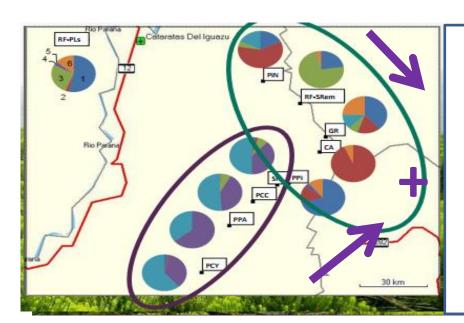
Objetivo:


caracterizar y cuantificar los niveles y distribución de la variabilidad genética molecular de

PNs (Poblaciones Nativas) de A. angustifolia a través de su área de dispersión en Argentina, así como en las RF-PLs (Plantaciones de la Reserva Forestal)

- · Hojas jóvenes de 323 ejemplares
- 10 Poblaciones o Sitios de colecta

500 AFLP


Aguirre, Natalia, 2014

Inza-Aguirre et al, 2018. DOI:10.1007/s00468-018-1701-4

Diversidad Araucuaria angustifolia

Población	Cd	N
Piñalito Norte	PiN	21
Selva Remanente de la Reserva Forestal (CAMB)	RF-SRem	26
Plantaciones de la Reserva Forestal (CAMB)	RF-PLs	82
Gramado	GR	28
Campiñas de Américo	CA	29
Parque Provincial El Piñalito	PPi	30
Santa Rosa	SR	20
Parque Provincial Cruce Caballero	PCC	31
Parque Provincial de la Araucaria	PPA	25
Parque Provincial Caá Yarí	PCY	31

Menores niveles de Diversidad de A. angustifolia en Misiones respecto de Brasil

-Expansión desde Refugios glaciales en el Sur de Brasil donde se encuentra la mayor diversidad

Extremo marginal oeste de su distribución

- Ecotono entre Selva Paranaense y Bosque Húmedo de Araucaria - Declinación natural
- Menor densidad de ind./ha Endogamia

Explotación forestal historica

- Fragmentación forestal
- Baja capacidad reproductiva
 - Sobremadures
 - Baja calidad sanitaria

Diversidad de *Cedrela lilloi* (= *C. angustifolia*) en selva de las Yungas

Ecol Evol. 2012 November; 2(11): 2722–2736.

Published online 2012 September 28. doi: 10.1002/ece3.336

PMCID: PMC350

Effect of latitudinal gradient and impact of logging on genetic diversity of Cedrela lilloi along the Argentine Yungas Rainforest

Maria V Inza, 1 Noga Zelener, 1 Luis Fornes, 2 and Leonardo A Gallo 3

14 poblaciones nativas, 160 individuos, 293 AFLP (=C. angustifolia, peligro de extinción)

Figura 28: Porcentaje de participación de las 14 poblaciones de C. lilloi en los tres (3) grupos genéticos K detectados.

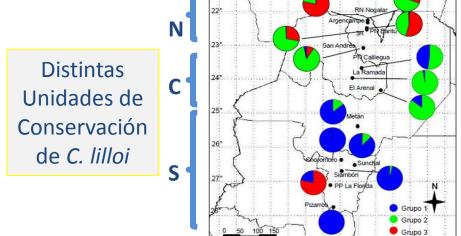
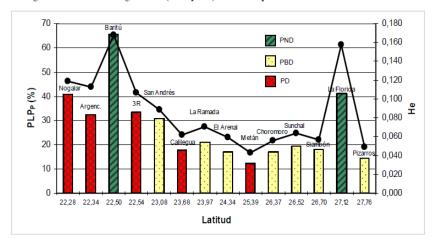
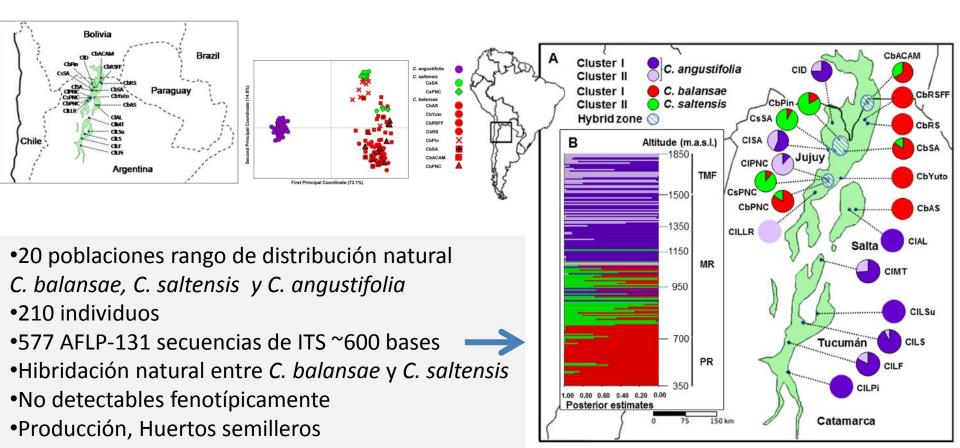



Figura 18: Diversidad genética (PLP y He) de las 14 poblaciones de C. lilloi analizadas.

Las barras corresponden al porcentaje de loci polimórfico por población (PLP_P) y la línea entera con puntos a la heterocigosidad esperada (He). Con diferentes colores se indican las distintas categorías de disturbio de las poblaciones (PD= población disturbada; PBD= población con bajo disturbio; PND= población no disturbada).

Disminución de la variabilidad genética de *C. lilloi en dirección norte-sur* responde al patrón geográfico de distribución de la diversidad taxonómica de las Yungas.


Evidencia molecular de zonas híbridas de Cedrela en las Yungas del NOA

Molecular evidence of hybrid zones of *Cedrela* (Meliaceae) in the Yungas of Northwestern Argentina

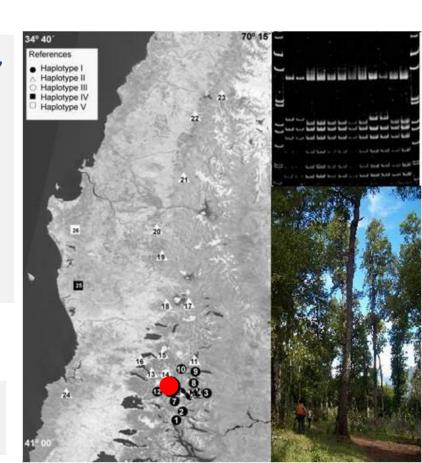
Noga Zelener^{a,*}, Daniela Tosto^b, Luiz Orlando de Oliveira^c, María Cristina Soldati^a, María Virginia Inza^a, Luis Fernando Fornes^d

Molecular Phylogenetics and Evolution 102 (2016) 45-55

Conservación del bosque

Knowing and Doing: Research Leading to Action in the Conservation of Forest Genetic Diversity of Patagonian Temperate Forests

Nothofagus nervosa y N. oblicua


LEONARDO A. GALLO,*†† PAULA MARCHELLI,*† LUIS CHAUCHARD,‡ AND MARCELO GONZALEZ PEÑALBA§

29 poblaciones, 823 individuos 4 años consecutivos colección de semillas

Isoenzimas, cloroplatos, SSR

Variación de características adaptativas en ensayos de procedencias y test de progenies

Parque Nacional Lanin cambia el estatus de protección de esta área para evitar la tala.

HACIA EL RESCATE GENÉTICO DEL SAUCE CRIOLLO (SALIX HUMBOLDTIANA)

Programa para su conservacion y la restauración de ecosistemas ribereños patagónicos

gallo.leonardo@inta.gob.ar
INTA EEA Bariloche
Abel Martinez
INTA AER Zapala
Jorge Bozzi
INTA EEA Bariloche
Ivana Amico
INTA EEA Esquel
Marina Hansen
Jardin Botánico Bariloche

Leonardo Gallo

El sauce criollo es una de las especies arbóreas más amenazadas de la Patagonia debido principalmente a la modificación del hábitat para su regeneración, la invasión de las riberas por sauces exóticos e hibridación inter-específica con ellos. El INTA ha comenzado un programa de rescate genético en la Patagonia para conservar su diversidad y seleccionar genotipos para restauración de ecosistemas ribereños.

Usos en nuestro país:

artesanal (ramas flexibles para cestería), ornamental, protección de costas, maderable (barriles, postes, muebles, cajones, ebanistería), forrajero para ganado, producción de miel y propóleos (flores y polen), combustible (leña y carbón), construcción rural (postes), medicinal.

La madera es, en general, blanca en la parte exterior y rosada o rojiza en la parte interior del tronco. La densidad superando las densidades de las otras especies y clones de sauces introducidos, aún de los utilizados en programas de mejora

- Modificación del hábitat propicio para su regeneración.
- Invasión del hábitat ribereño por parte de los clones de sauces exóticos introducidos por el hombre.
- Hibridación y probable introgresión y dilución genética con los clones exóticos

Desarrollo de SSR Alelos fijados que distinguen híbridos De los sauces que cubren casi la totalidad de la ribera de los ríos nordpatagónicos en un radio de 400 km alrededor de la ciudad de Bariloche, el 93 % pertenecen a un mismo clon femenino de la especie introducida *Salix x rubens* (*S.alba x S. fragilis*)

Zonas genéticas de Raulí y Roble

Forest Ecology and Management 302 (2013) 414-424

Contents lists available at SciVerse ScienceDirect

Forest Ecology and Management

journal homepage: www.elsevier.com/locate/foreco

Management of *Nothofagus* genetic resources: Definition of genetic zones based on a combination of nuclear and chloroplast marker data

M.M. Azpilicueta ^{a,*}, L.A. Gallo ^a, M. van Zonneveld ^b, E. Thomas ^b, C. Moreno ^a, P. Marchelli ^{a,c}


749 adultos y 74 plántulas

24 poblaciones: (14 N. nervosa (486 individuos) y 10 de N. obliqua (337 individuos);

34.3 ± 5.0 individuos promedio por población

7 nSSR, cpADN, isoenzimas Estructura genética métodos bayesianos, riqueza alélica

Manejo productivo y de conservación Acciones de migración asistida Definición de áreas prioritarias para la conservación

restauración y/o plantación, >probabilidad de buena adaptación y <riesgo de contaminación genética.

Zonas genéticas de Raulí

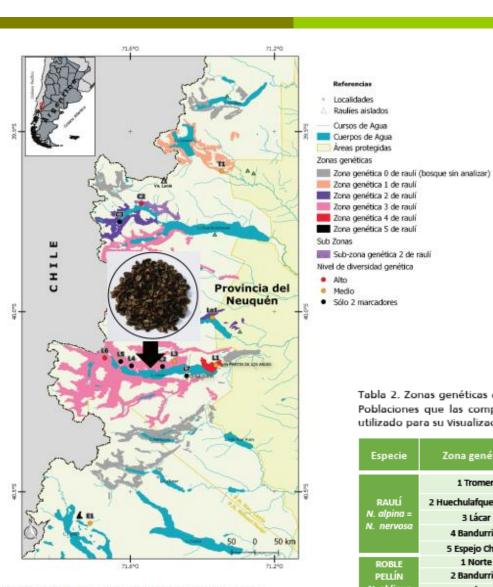


Figura 11. Distribución a futuro modelada para rauli según predicciones de cambio climático para el año 2050 considerando el escenario RCP 4.5 del CMIPS.

Tabla 2. Zonas genéticas definidas para raulí y roble pellín a ser utilizadas como fuente segura de semilla. Poblaciones que las componen, cuencas de localización y color de identificación de las zonas genéticas utilizado para su Visualización en los mapas de las figuras 7 y 8.

Especie	Zona genética	Poblaciones	Cuencas	Color en el mapa
	1 Tromen	T1	Tromen	NARANJA
RAULÍ	2 Huechulafquen-Lolog	C2-C3-L01	Curruhué-Huechulafquen y Lolog	VIOLETA
N. alpina =	3 Lácar	L2-L3-L4-L5-L6-L7-L02-C1	Lácar, Lolog y Curruhué	ROSADO
N. nervosa	4 Bandurrias	ц	Lácar	ROJO
	5 Espejo Chico	E1	Espejo	NEGRO
ROBLE	1 Norte	E1-Q1-Ñ1-P1	Epulauquen, Ñorquinco, Quillén y Aluminé	VIOLETA
PELLÍN	2 Bandurrias	u	Lácar	MARRÓN
N. obliqua	3 Lácar L2-L3-L4-L5-L6		Lácar	NARANJA

Figura 9. Provisión de semilla por zona genética identificada en raulí.

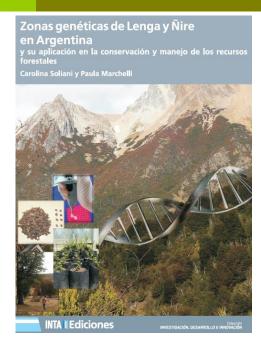
Zonas genéticas de Raulí

Tabla 3. Poblaciones analizadas de raulí y roble pellín para los tres marcadores genéticos, cuenca en la que se localizan y ubicación geográfica. Categoría de diversidad genética alcanzada por marcador y para la combinación de los tres, con el color de identificación de nivel de diversidad usado en las figuras 7 y 8.

Espe de	Cuenca	Población	ID	La fitud (S)	Longitud (O)	Altitud (m snm)	ı	М	ОР	Diversidad combinada	Jurisdicción
	Espejo	Espejo Chico	E1	40"34"48""	71° 43°12°	1000	В	Α	В	MEDIA	PN Nahuel Huapi
		Bandurrias	L1	40"09"00"	71°21'00"	980	Α	В	В	MEDIA	PN Lanín
	Lácar	Quilanlahue	L3	40'08'18"	71°28'04"	913	В	Α	В	MEDIA	PN Lanín
RAULÍ		Hua Hum	L6	40'07'55"	71°40'02"	940	A	Α	A	ALTA	PN Lanín
N. alpina =	Labor	Puerto Arturo	Lo1	40"01"12"	71°22'48"	850	В	Α	В	MEDIA	PN Lanín
N. nervosa	Lolog	Boquete	Lo2	40"01"12"	71°35'24"	720	A	Α	В	ALTA	PN Lanín
re. nereosa	Curruhué-	Curruhué	C1	39°51'00"	71°29'26"	970	В	Α	В	MEDIA	PN Lanín
	Huechulafquen	Lanín	C2	39°42"16"	71°34°15"	970	A	Α	В	ALTA	PN Lanín
	Tromen	Tromen	T1	39°36'00"	71°19'48"	1100	В	Α	В	MEDIA	PN Lanín
	Lácar	Bandurrias	L1	40"09"00"	71°21'00"	850	В	Α	В	MEDIA	PN Lanín
		Yuco	L2	40*09*07**	71°30'39"	930	В	В	В	BAJA	PN Lanín
		Nonthué	L4	40"08"46"	71°37'03'''	680	В	Α	В	MEDIA	PN Lanín
		Hua Hum	L5	40*07"55"	71°40'02"	670	В	В	В	BAJA	PN Lanín
popur pru hi		Quila Quina	L6	40°10'40"	71°26'37"	983	Α	В	A	ALTA	PN Lanín
ROBLE PELLÍN	Quillén	Corral Bueyes	Q1	39"22"16"	71°17'31''	1140	В	Α	В	MEDIA	PN Lanín
N. obliqua	Norquinco	Se ccional	Ñ1	39 0911"	71°15'03'''	1071	Α	Α	В	ALTA	PN Lanín
	Aluminé	Pilo III	P1	39*30*05**	70'57'44"	836	В	В	В	BAIA	Dir. Bosques Neuquén (privado)
	E pulau quen	Epulauquen	E1	36°49'09"	71°04'07"	1500	Α	Α	Α	ALTA	Reserva Pcial. de Neuquén

Reforestación Cerro Otto

https://inta.gob.ar/videos/reforestacion-en-el-cerro-otto


https://www.youtube.com/watch?v=zkKHrY9aoqw

18 de octubre de 2018 / VIDEO

Reforestación en el Cerro Otto

En la ladera sur del cerro Otto en Bariloche aún hoy se ven los esqueletos de añejos árboles afectados por dos grandes incendios en los últimos 23 años. En ese lugar volverán a crecer árboles nativos a través de un plan de reforestación que comenzó con la plantación de especies nativas en dos áreas afectadas por eso incendios.

Diversidad de Palo Santo

Biological Journal of the Linnean Society, 2018, XX, 1–20. With 9 figures.

Genetic and climatic approaches reveal effects of Pleistocene refugia and climatic stability in an old giant of the Neotropical Dry Forest

GONZALO A. CAMPS^{1,2}, ENRIQUE MARTÍNEZ-MEYER^{3,4}, ANIBAL R. VERGA¹, ALICIA N SÉRSIC^{2†} and ANDREA COSACOV^{2†*}

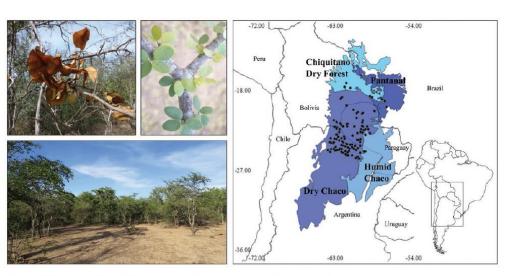


Figure 1. Geographical distribution area of *Bulnesia sarmientoi*. Left: fruits, leaves and trees of *B. sarmientoi*, in a particular vegetation formation called 'palosantal'. Right: partial map of South America showing the ecoregions (in blue hues) where the species is distributed. The Gran Chaco Americano comprises the Dry Chaco and Humid Chaco. Black points: presence points of *B. sarmientoi*. Ecoregions correspond to those of Olson *et al.* (2001).

AND de cloroplastos: trnL-trnF, rpl32 F-trnL (*Más variables*)

trnD-trnT, trnH-psbA, rpl32_R-ndhF, rps2_47F-rps2_661R y 8for-1525rev (Menos variables)

144 *B. sarmientoi* individuos,25 localidades, 6/ localidad,> 80 m área de distribución *B. sarmientoi*.

Diversidad de Palo Santo

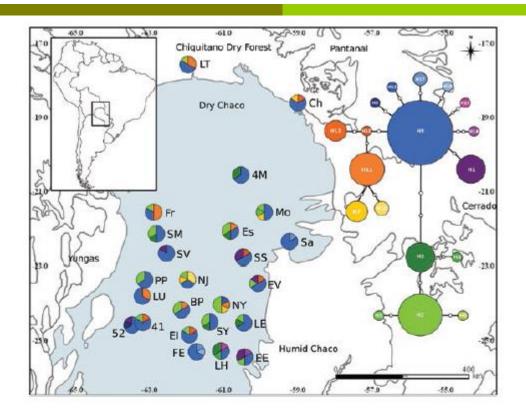


Figure 2. Geographical distribution and genealogical relationships among haplotypes recovered from 24 populations of *Bulnesia sarmientoi*. On the map, pie charts show the haplotype frequency in each population. Haplotype colours correspond to those shown in the network on the right. In the network, haplotypes are designated with numbers, and circle sizes are proportional to haplotype frequency. Codes are given in Table 1.

Los Bosques Secos sufrieron eventos de expansión de la población durante los **períodos glaciales**, mientras que han sufrido estancamiento poblacional durante los períodos interglaciales. Identificación de área de refugio putativo en El Chaco seco que ha sido climáticamente estable a lo largo del tiempo, consistente con el área de mayor diversidad genética y con la localización espacial del óptimo climático de las especies focales.

Grupo de Investigación del IB: Genómica Forestal

Dra. Susana Marcucci Poltri (investigadora INTA)

Dra. Cintia Acuña (investigadora INTA)

Dr. Martín García (Investigador CONICET)

Dra. M. Carolina Martínez (investigadora INTA)

Dra. Pamela Villalba (Investigadora CONICET)

Dr. Gabriel Rivas (Consultor)

Lic. Natalia Aguirre (Beca Doctoral CONICET)

Dr. Esteban Hopp (Investigadora INTA)

Colaboradores:

EEA Montecarlo (Misiones): Patricia Schmid, Gustavo Rodríguez, Ma. Elena Gauchat, et al

EEA Concordia (Entre Ríos): Leonel Harrand, Javier Oberschelp, Pamela Alarcón, Martín Marcó

EEA Bella Vista (Corrientes): Juan López, Javier López et al

EEA Bariloche (Río Negro): Leonardo Gallo et al

EEA Delta (Bs. As.): Silvia Cortizo, Teresa Cerrillo

IFRGV-CIAP: Aníbal Verga, Diego López Lauenstein et al

Instituto de Recursos Biológicos, CIRN: Susana Torales, Eduardo Cappa, Pablo Pathauer et al Unidad de Genómica (UGB-IB): Andrea Puebla, Verónica Nishinakamasu, Pablo Vera, Natalia

Aguirre, Luis Fernández

<u>Unidad de Bioinformática (UGB-IB)</u>: Norma Paniego, Máximo Rivarola, Sergio González

Asesor: Leonardo Ornella

Muchas gracias!!