

PUESTA EN MARCHA Y MANTENIMIENTO DE SISTEMAS DE RIEGO


Todo sistema de riego:

- Tiene componentes, los cuales hay que mantener:

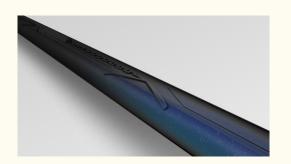
Todo sistema de riego:

- Tiene etapas:

+ Diseño

+ Instalación

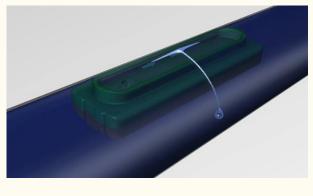
+ Mantenimiento



El emisor:

- El corazón del sistema.

- El principal propósito del mantenimiento es su


protección.

El operador de un sistema de riego debe:

- Estar capacitado y apoyado técnicamente.
- Tener un excelente conocimiento del sistema y todos sus componentes.
- Tener la capacidad de analizar el funcionamiento del sistema y los diferentes eventos.
- Tener la capacidad para ofrecer una rápida acción correctiva en caso de ocurrencias imprevistas.
- Poder programar un plan de mantenimiento preventivo.
- Tener en el depósito todas las herramientas necesarias y determinadas piezas de reposición para evitar la "parada" del sistema.

Dos herramientas fundamentales de control en un sistema de riego:

* Caudal:

- Medido a través de un hidrómetro.
- Unidad de medida: l/s, l/h, m³/h.

* Presión:

- Medido a través de un manómetro.
- Unidad de medida: mca, Kg/cm², Bar.

LOS DOS PARÁMETROS SON ESENCIALES, HAY QUE MEDIRLOS Y REGISTRARLOS.

Por qué medir presión y caudal ???

- Igual presión => Igual caudal => misma "oferta"
 y "demanda".
- Mayor presión => Mayor caudal => aumento de "oferta", ej.: bomba reparada, filtros limpios.
 - => Menor caudal => disminución de "demanda", ej.: taponamiento de emisores.
- Menor presión => Mayor caudal => aumento de "demanda", ej.: emisor auto-compensado fallado.
 - => Menor caudal => disminución de "oferta", ej.: falla de bomba, filtros tapados.

Elementos a considerar en el mantenimiento:

Fuente de agua

Lateral

Bombeo y filtración

Tareas a considerar en el mantenimiento:

Presión de operación

Medición de caudales

Pérdidas

Tratamientos químicos para limpieza y prevención

Purga de líneas y laterales

FUENTES DE AGUA

- Superficial: es la que mayor variación de contaminantes puede tener debido a su exposición al aire, y a la presencia de fuentes contaminantes tanto orgánicos como inorgánicos.
- Subterránea: no se encuentra sometida a una gran variación de contaminantes y suelen ser generalmente inorgánicos.
- Reúso: la composición y carga contaminante que tenga va a depender de su uso previo; requiere realizar estudios previos.

Riesgo potencial de obturaciones por el agua de riego

Tipo de contaminante		Nivel de Riesgo		
		Reducido	Medio	Alto
Físico	Sólidos Suspendidos (ppm)	< 50	50 - 100	> 100
Químico	рН	< 7,0	7,0 - 8,0	> 8,0
	Sólidos disueltos (ppm)	< 500	500 - 2000	> 2000
	Mn (ppm)	< 0,1	0,1 - 1,5	> 1,5
	Fe (ppm)	< 0,1	0,1 - 1,5	> 1,5
	SH ₂ (ppm)	< 0,5	0,5 - 2,0	> 2,0
Biológico	Población Bacteriana (Nº/cm³)	< 10.000	10.000 - 50.000	> 50.000

Bucks et al (1979); Bucks y Nakayama (1980)

Reservorios:

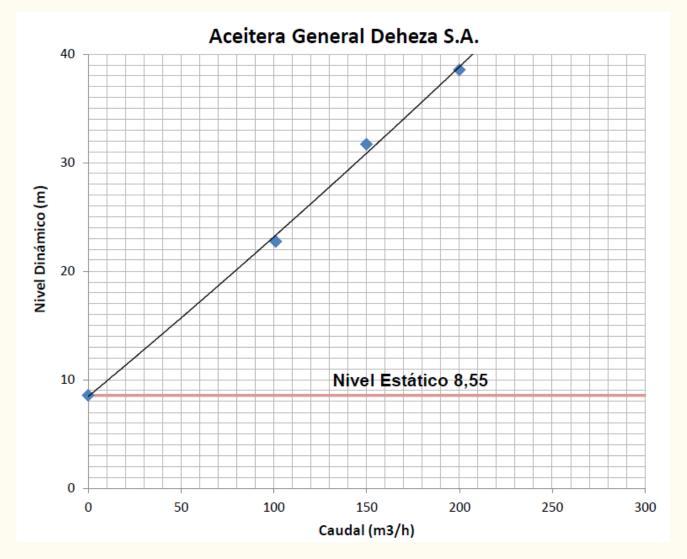
- Realizar limpiezas de sedimentos en función de la acumulación.
- Evitar infiltración.
- Evitar crecimiento orgánico.
- Incorporar peces herbívoros.
- Mantener limpias las descargas de agua.
- Mantener limpias las tomas de bombeo.

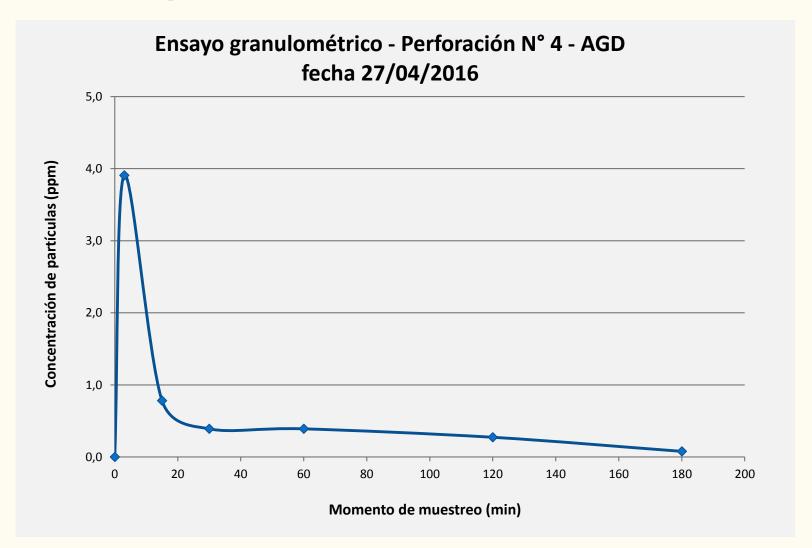
Ejemplos de tomas de agua:

Ejemplos de tratamientos previos:

Perforaciones:

- Conocer los parámetros de diseño y de trabajo de la perforación.
- Parámetros de diseño: profundidad de perforación, cantidad de filtros y ubicación, tamaño de ranura de los filtros, engravado, etc.
- Parámetros de trabajo: caudal máximo de trabajo, productividad, nivel estático, nivel dinámico, etc.
- Realizar ensayos de los parámetros de trabajo una vez al año.
- Medir parámetros físico-químicos del agua extraída.

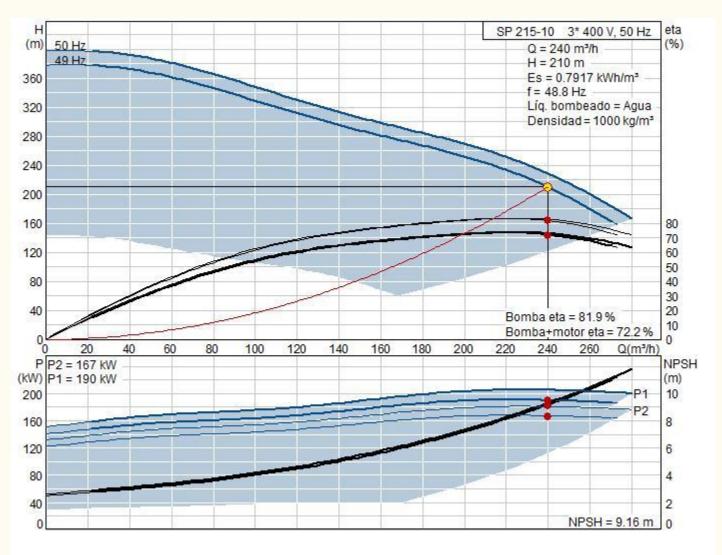

Ensayos en perforaciones de parámetros de trabajo:



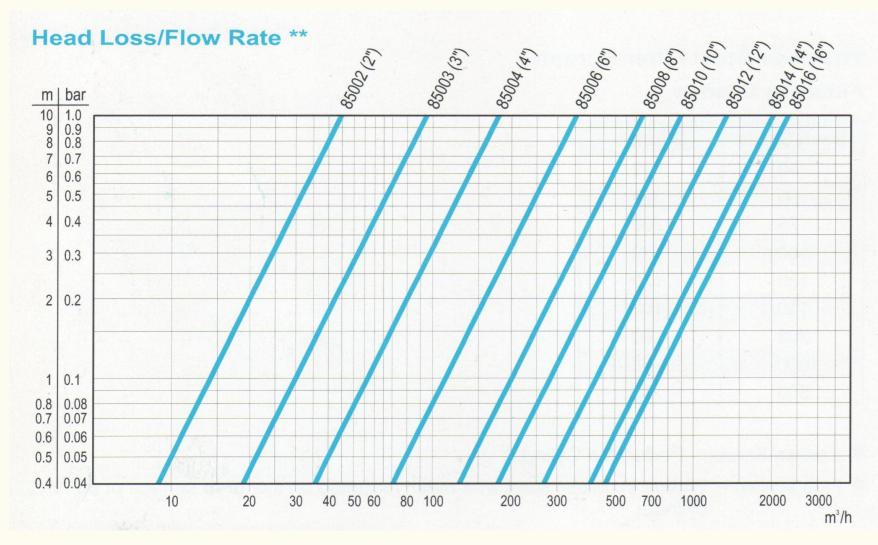
Ensayo Caudal – Nivel dinámico:

Ensayo granulométrico :

Sistemas de bombeo:


- Tensión eléctrica que alimenta los equipos.
- Corriente consumida por los motores.
- Eficiencia de trabajo de las bombas.
- Ensayos de desempeño de las bombas.
- Monitoreo de los diferentes componentes de seguridad y control operacional.

Curva caudal - presión:



Sistemas de filtración:

- Mantener los componentes de los filtros en perfecto estado, como sellos, piezas móviles, cuerpos de mallas, etc.
- Todo filtro no debe superar una pérdida de carga mayor de 5 mca.
- El lavado de los filtros debe ser por tiempo y/o por diferencia de presión.
- Los filtros secundarios se deben lavar por lo menos una vez al mes.

Curvas caudal – pérdida de carga:

Los filtros REQUIEREN mantenimiento:

Presión de operación:

- Verificar y calibrar las presiones de trabajo de acuerdo al diseño del sistema.
- Mantener la presión de trabajo de un lateral de pared gruesa entre 8 y 25 mca.
- Mantener la presión de trabajo de una cinta entre 5 y 15 mca.
- Tener siempre disponible un manómetro para verificar las condiciones de trabajo del equipo.

Medición de caudales:

- Con un registro correcto a través de los años recibiremos información que contribuirá a mejorar el funcionamiento del equipo, la economía de energía y los costos de mantenimiento.
- Llevar planillas de los caudales de las diferentes operaciones. Se puede llevar con la computadora que registra los datos o manualmente.
- Cambios en el caudal registrado son síntomas de fallas en el sistema.

Pérdidas:

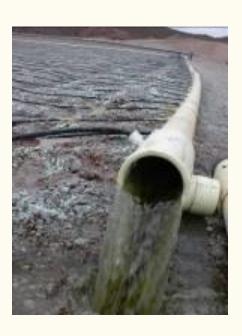
- Causan: pérdidas de agua y fertilizantes, oxidación de piezas de Hierro, acumulación de sales y succión de partículas del suelo.
- Dependiendo de su tamaño pueden disminuir la eficiencia del sistema en general.
- ASEGURARSE que todas las partes del sistema estén en perfectas condiciones, libres de fugas, empezando desde el cabezal principal hasta el último lateral.

Esto NO debe ocurrir:

Purga de las tuberías:

- El orden de limpieza de las tuberías es:
 - * Tuberías principales.
 - * Tuberías secundarias.
 - * Laterales.
 - * Colectoras en el caso que hayan.

Purga de las líneas principales y secundarias:


- Se deben lavar muy bien:
 - * Durante de la instalación.
 - * Cada vez que se repare una rotura de la línea.

Purga de los laterales:

- Velocidad mínima de lavado: 0,3 m/s.

Purga de las tuberías:

- Siempre al principio de cada temporada.
- A lo largo de la temporada dependiendo de la calidad del agua utilizada:
 - * Agua muy limpia: una o dos veces por temporada.
 - * Agua limpia: una vez por mes.
 - * Agua sucia: cada dos semanas.
 - * Agua muy sucia: una vez por semana.
- Siempre purgar las tuberías después de roturas.

Tratamiento con ácido:

- Objetivos:
 - 1 Prevenir la precipitación de sales en el sistema:
 - * A través de un tratamiento continuo manteniendo un pH de 6,0 – 6,5 con una inyección permanente de ácido.
 - 2 Disolver sales precipitadas en el sistema:
 - * Se realiza dos veces en la temporada.
 - * La tarea consiste en inyectar ácido para descender el pH a 2,0.
 - * El tiempo de aplicación es de 30 minutos para emisores auto-compensados y de 60 minutos para emisores no auto-compensados.

Curva de acidificación de agua:

INFORME DE ANÁLISIS

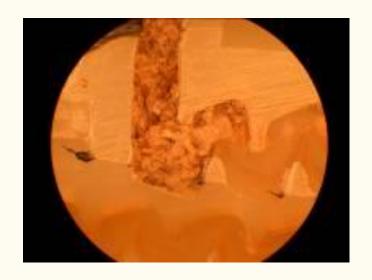
ORDEN DE TRABAJO Nº: 22304/15-01

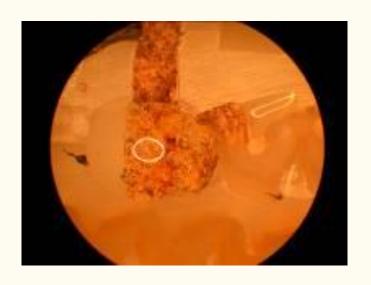
INFORME ÚNICO Página 2 de 2

Muestra Nº2				
pH	ml ác. Fosfórico 85%/ l			
Método: potenciométrico				
7,40	0			
6,45	0,02			
6,00	0,04			
5,45	0,07			
5,03	0,08			
4,07	0,10			
3,42	0,11			
3,00	0,15			
2,50	0,28			
2,00	1,12			
1,50	11			

ANALIZÓ: Lic. Analía Santi

INFORMADO: 29/12/15


Monitoreo de pH en campo:



Consideraciones importantes:

- El tratamiento con ácido no debe utilizarse en caso de tener taponamiento de emisores con materia orgánica o con material mineral.
- En casos de taponamientos severos los tratamientos deben reiterarse para obtener resultados efectivos.

Taponamientos severos con sales:

Características de los ácidos más usados:

Ácido	Fórmula	Capacidad Nutritiva	Capacidad de disolución	Peligro de manipulación
Clorhídrico	HCI	-	++	+
Fosfórico	H ₃ PO ₄	+	+	+ / -
Sulfúrico	H ₂ SO ₄	+ / -	++	++
Nítrico	HNO ₃	+	++	++
Orgánico	R-COOH	-	+ / -	-

Resistencia de las partes a los ácidos:

Parte	Material	Resistencia
Tubos y laterales	PE PP PVC	+
Membranas de emisores	Silicona EPDM	+
Tubos	Cemento Metal	-
	Acetal	+/-
Conectores	PP	+

Tratamiento con Cloro:

- Objetivos:
 - * Oxidación y descomposición de materia orgánica.
 - * Prevenir el crecimiento de algas u otros microorganismos.
 - * Oxidación de Hierro y Manganeso para filtrarlos y eliminarlos del agua.
 - * Eliminación de microbios sulfúricos.

Métodos de aplicación:

- Aplicación continua:
 - * Inyección de Cloro por media hora al final del riego, cada tres días, a una concentración que permita detectar entre 0,5 1,0 ppm de Cloro libre activo en punta de lateral.
- Aplicaciones puntuales:
 - * Inyección de Cloro por media hora al final del riego, varias veces en la temporada:
 - + Tratamiento preventivo: 5 10 ppm.
 - + Tratamiento moderado: 10 50 ppm.
 - + Tratamiento severo: 50 500 ppm.

Determinación de Cloro libre:

RESULTADOS:

Determinación	Nº 3
Demanda de cloro: ml hipoclorito de sodio (55g/l)/l <u>Método</u> : Colorimétrico con ortotoluidina	0,007

Nota: el agua tratada de esta forma queda luego de pasados 10 minutos con una concentración de cloro libre de 0,10 ppm.

ANALIZÓ: Lic. Analía Santi

INFORMADO: 29/12/15

Monitoreo de Cloro libre en campo:

Formas de aplicación de Cloro:

- Hipoclorito de Sodio, NaOCl:
 - * Disponible como líquido.
 - * Es el más económico.
 - * Concentraciones de 5 15 %.
- Hipoclorito de Calcio, Ca(OCI)₂.4H2O:
 - * Disponible en forma granulada o en tabletas.
 - * Concentraciones de 60 70 %.
- Dióxido de Cloro, ClO₂:
 - * Disponible como líquido o gas.
 - * Es poco frecuente su uso por el costo elevado y la peligrosidad de su manipulación.
 - * Concentraciones de 90 98 %.

Fertilizantes:

- En la medida de lo posible utilizar fertilizantes líquidos concebidos para sistemas de riego.
- En el caso de fertilizantes sólidos, tener presente:
 - * Concentración máxima posible.
 - * pH y temperatura de la solución.
- Para cualquiera de los casos, tener presente problemas de incompatibilidad en la mezcla de dos o más fertilizantes.

Depósitos de Hierro insoluble (Fe+3):

Depósitos de carbonatos (CO3Ca):

