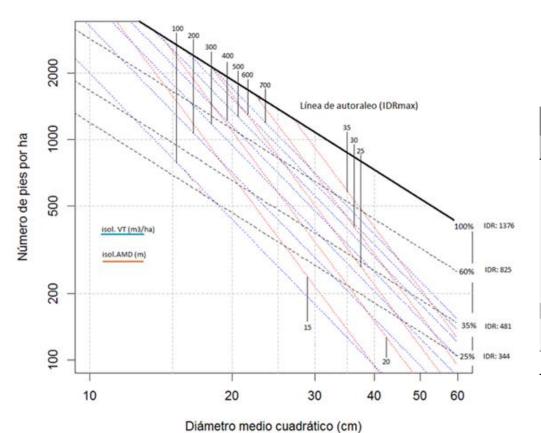
Planificación silvícola

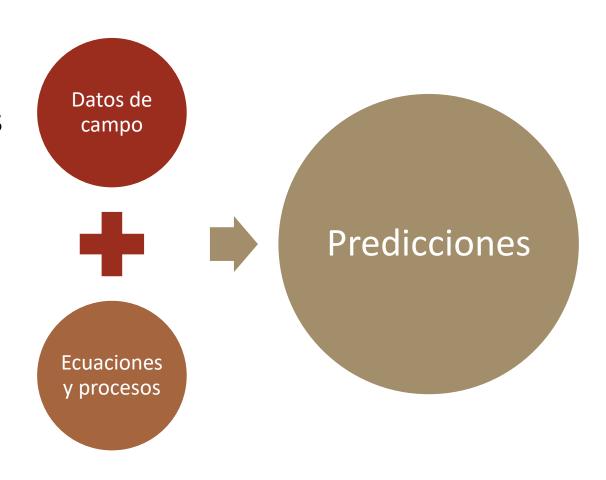

Modelos de crecimiento y producción

Para la clase de hoy

- Descripción de diferentes modelos de rendimiento.
- Algunos ejemplos de aplicación.
- Simulador Forestal PLAFORNEA.

Metodologías para la determinación del rodal objetivo

- Diagramas de manejo de la densidad (DMD)
- Metodología de serie mínima para el manejo de rodales disetáneos
- Modelos de producción o rendimiento


1. Estructura actual							
Clase de DAP (cm)	Altura media (m)	N (ind/ha)	Área basal (m²/ha)	Volumen total (m³/ha)			
7,5	8,5	630	2,78	11,76			
12,5	10,8	385	4,72	26,94			
17,5	12,7	124	2,98	20,79			
22,5	14,4	138	5,49	44,61			
27,5	15,8	53	3,15	28,77			
32,5	17,2	80	6,64	67,24			
37,5	18,4	29	3,20	35,31			
42,5	19,5	7	0,99	11,78			
47,5	20,6	16	2,84	35,97			
52,5	21,6	26	5,63	75,75			
57,5	22,6	23	5,97	84,97			
62,5	23,5	7	2,15	32,09			
	TOTALES	1518	46,54	475,97			

2. Estructura de la serie mínima					
N (ind/ha)	Área basal (m²/ha)				
38,44	0,17				
25,63	0,31				
17,09	0,41				
11,39	0,45				
7,59	0,45				
5,06	0,42				
3,38	0,37				
2,25	0,32				
1,50	0,27				
1,00	0,22				
0,00	0,00				
0,00	0,00				
113,33	3,39				

N (ind/ha) (m²/ha) (m³/ha) 7 340 1,50 6,8 1 227 2,78 15,8 1 151 3,63 25,3 5 101 4,00 32,5 6 7 3,99 36,4 2 45 3,71 37,6 3 3,30 36,3 2 20 2,82 33,4 7 13 2,35 29,8 2 9 1,91 25,7 0 0 0,00 0,0 0 0 0,00 0,0		3. Estructura del rodal objetivo				
1 227 2,78 15,8 1 151 3,63 25,5 5 101 4,00 32,5 5 67 3,99 36,4 2 45 3,71 37,6 7 30 3,30 36,3 2 20 2,82 33,4 7 13 2,35 29,8 2 9 1,91 25,7 0 0 0,00 0,0		N (ind/ha)		Volumen total (m³/ha)		
1 151 3,63 25,5 5 101 4,00 32,5 5 67 3,99 36,4 2 45 3,71 37,6 7 30 3,30 36,5 2 20 2,82 33,4 7 13 2,35 29,8 2 9 1,91 25,7 0 0 0,00 0,0	7	340	1,50	6,34		
5 101 4,00 32,5 5 67 3,99 36,4 2 45 3,71 37,6 7 30 3,30 36,5 2 20 2,82 33,4 7 13 2,35 29,8 2 9 1,91 25,7 0 0 0,00 0,0	1	227	2,78	15,85		
5 67 3,99 36,4 2 45 3,71 37,6 7 30 3,30 36,3 2 20 2,82 33,4 7 13 2,35 29,6 2 9 1,91 25,7 0 0 0,00 0,0 0 0,00 0,0	1	151	3,63	25,33		
2 45 3,71 37,6 7 30 3,30 36,3 2 20 2,82 33,4 7 13 2,35 29,8 2 9 1,91 25,7 0 0 0,00 0,00 0 0,00 0,00	5	101	4,00	32,55		
7 30 3,30 36,5 2 20 2,82 33,4 7 13 2,35 29,6 2 9 1,91 25,7 0 0 0,00 0,0 0 0,00 0,0	5	67	3,99	36,44		
2 20 2,82 33,4 7 13 2,35 29,6 2 9 1,91 25,7 0 0 0,00 0,0 0 0,00 0,0	2	45	3,71	37,62		
7 13 2,35 29,6 2 9 1,91 25,7 0 0 0,00 0,00 0,0	7	30	3,30	36,33		
9 1,91 25,7 0 0 0,00 0,0 0 0 0,00 0,0	2	20	2,82	33,46		
0 0,00 0,00 0 0,00 0,0	7	13	2,35	29,81		
0,0 0,0 0,0	2	9	1,91	25,76		
	0	0	0,00	0,00		
9 1002 30,00 279,4	0	0	0,00	0,00		
	9	1002	30,00	279,49		

Modelos

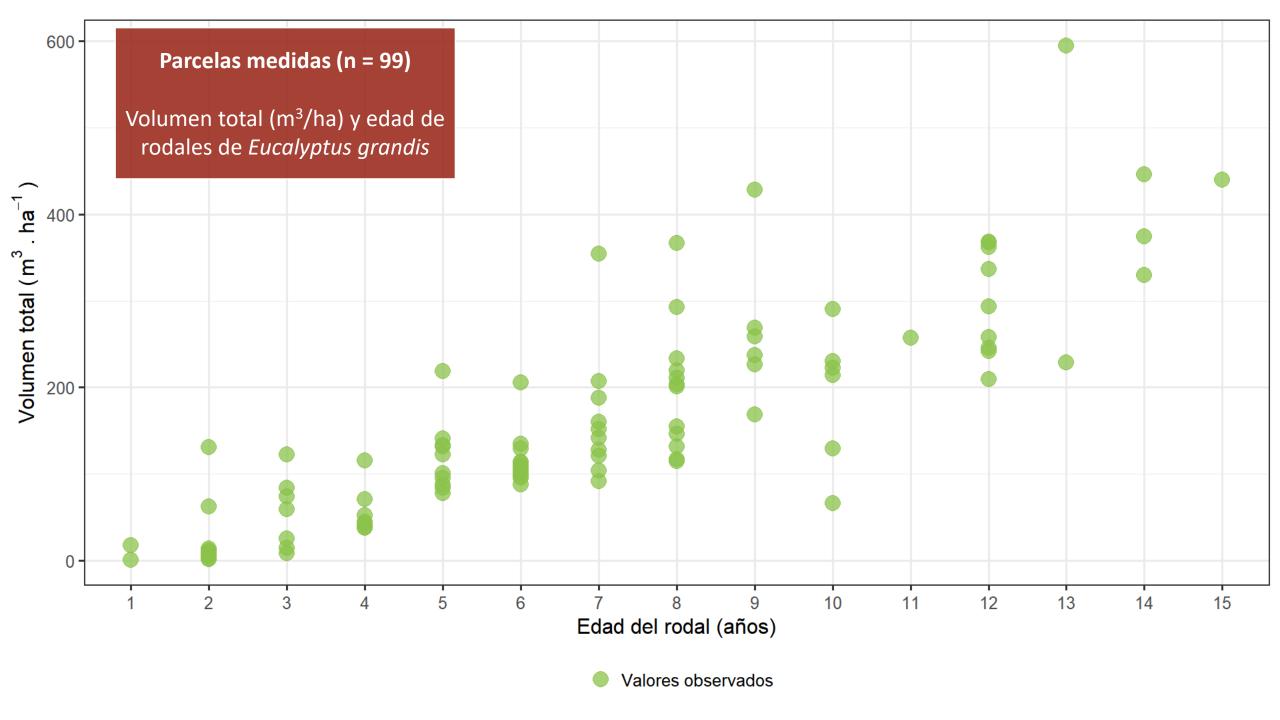
 Un modelo es una simplificación deliberada de algún aspecto de la realidad de manera tal que los fenómenos de interés puedan ser predichos, analizados y comprendidos (Botkin, 1993)

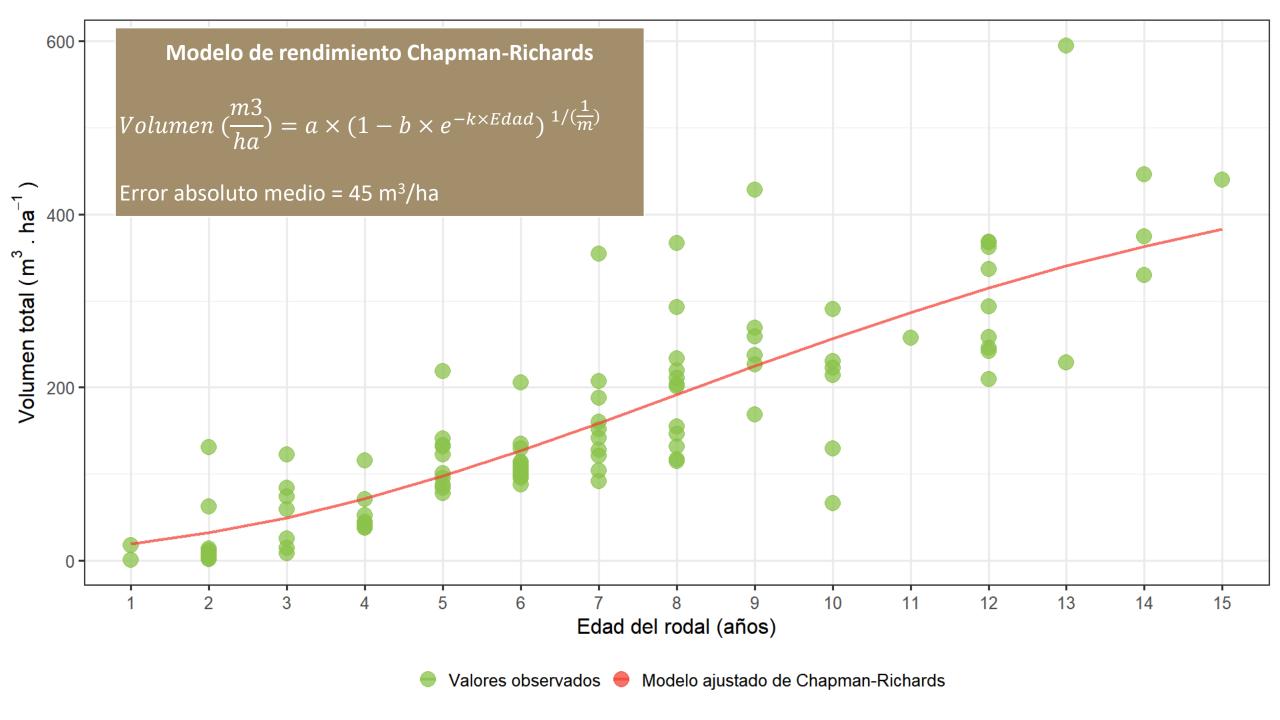
¿Por qué son importantes?

- Fundamentales para la investigación y el manejo forestal.
- Permiten predecir las condiciones del rodal y analizar diferentes practicas silviculturales y opciones de manejo, tales como:
 - estimación de rendimientos actuales y futuros,
 - **simulación de respuestas** de rendimientos ante distintas combinaciones de factores de producción,
 - evaluación de escenarios productivos y
 - toma de decisiones económico-financieras.

Clasificación de los modelos

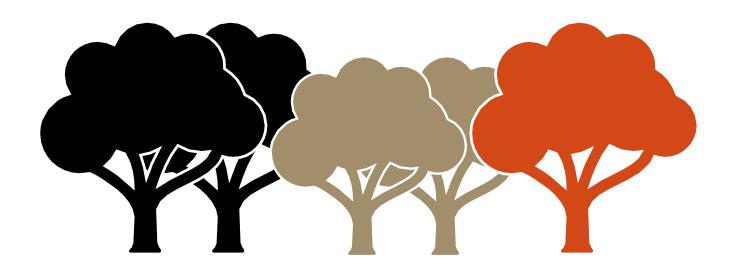
Modelos empíricos


Modelos de procesos


- de rodal.
- de clases de tamaño.
- de árbol individual
 - independiente de la distancia.
 - dependientes de la distancia.

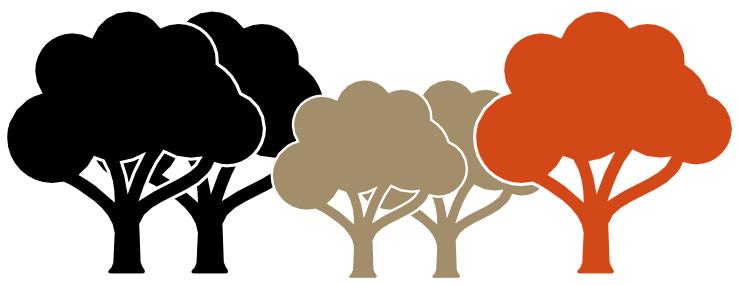
Modelos de híbridos

Modelos a escala de rodal

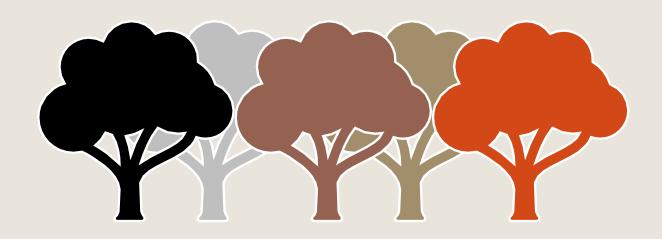

Síntesis: Modelos de rodal

- Estiman crecimiento o rendimiento del rodal a partir de parámetros de rodal: son sistemas explícitos de predicción (Clutter et al., 1983).
- Las variables de entrada y de salida son parámetros de rodal.
- Simples y robustos.
- Según la densidad:
 - Densidad fija
 - $Volumen\left(\frac{m3}{ha}\right) = f(edad, sitio)$
 - Densidad variable
 - Volumen $\left(\frac{m3}{ha}\right) = f(edad, sitio, densidad)$

¿Y si queremos más detalle?

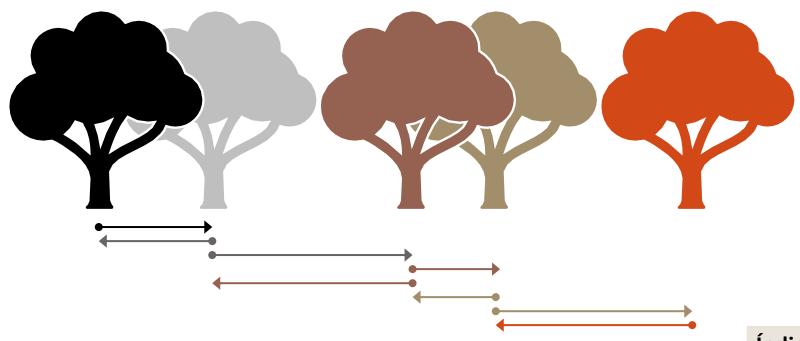


Modelos de <mark>clase de tamaño</mark>



Modelos de clase de tamaño

cada grupo de árboles se evalúa en función de **clases de tamaño**.



¿Y si queremos más detalle?

Modelo de árbol individual

Se tiene en cuenta la **distancia y el tamaño de los competidores** para estimar su situación competitiva.

Índices de competencia (IC)

Modelo de árbol individual

cada árbol se evalúa en función de su tamaño individual.

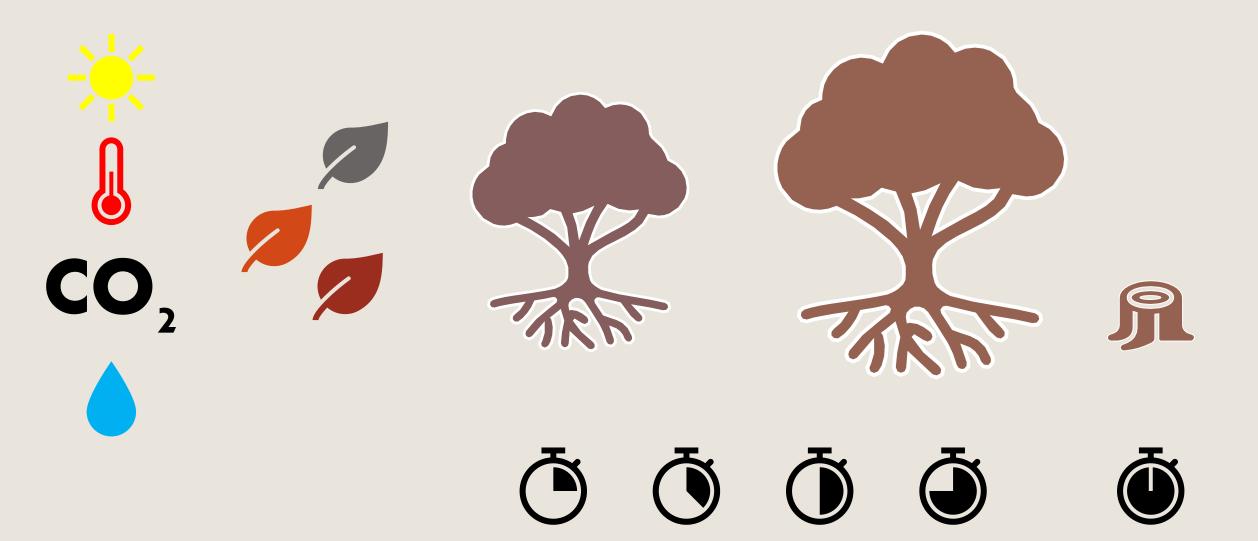
Índices de competencia (IC)

Síntesis: Modelos de árbol individual

• Índices de competencia

• expresan la influencia de los árboles vecinos en el espacio vital de cada árbol objetivo, variando a medida que este entorno se ve comprometido por el crecimiento (tamaño) y la ocupación del espacio (Arnoni Costa *et al.*, 2020).

• Modelos independientes de la distancia


- La condición de cada árbol se evalúa en función de su tamaño individual
- Volumen $\left(\frac{m3}{ha}\right) = f(DAP, altura, condiciones copa)$
- Índice de competencia (IC) independientes de la distancia (por ejemplo área basal(AB)).

•
$$IC = \frac{AB_{individual}}{AB_{total}}$$

Modelos dependientes de la distancia

• Se tiene en cuenta la distancia y el tamaño de los competidores para estimar su situación competitiva.

¿Y si queremos más detalle?

Ecosistemas 22(3):29-36 [Septiembre-Diciembre 2013] Doi.: 10.7818/ECOS.2013.22-3.05

Artículo publicado en Open Access bajo los términos de Creative Commons attribution Non Comercial License 3.0.

MONOGRÁFICO:

Modelos ecológicos: descripción, explicación y predicción

ISSN 1697-2473 / Open access disponible en www.revistaecosistemas.net

GOTILWA+: un modelo de procesos que evalúa efectos del cambio climático en los bosques y explora alternativas de gestión para su mitigación

- D. Nadal-Sala 1,*, S.Sabaté1,2, C. Gracia1,2
- (1) Departamento de Ecología, Facultad de Biología, Universitat de Barcelona, 08028 Barcelona, España.
- (2) CREAF (Centre de Recerca Ecològica i Aplicacions Forestals), 08193 Cerdanyola del Vallès, España

PROGRAMA

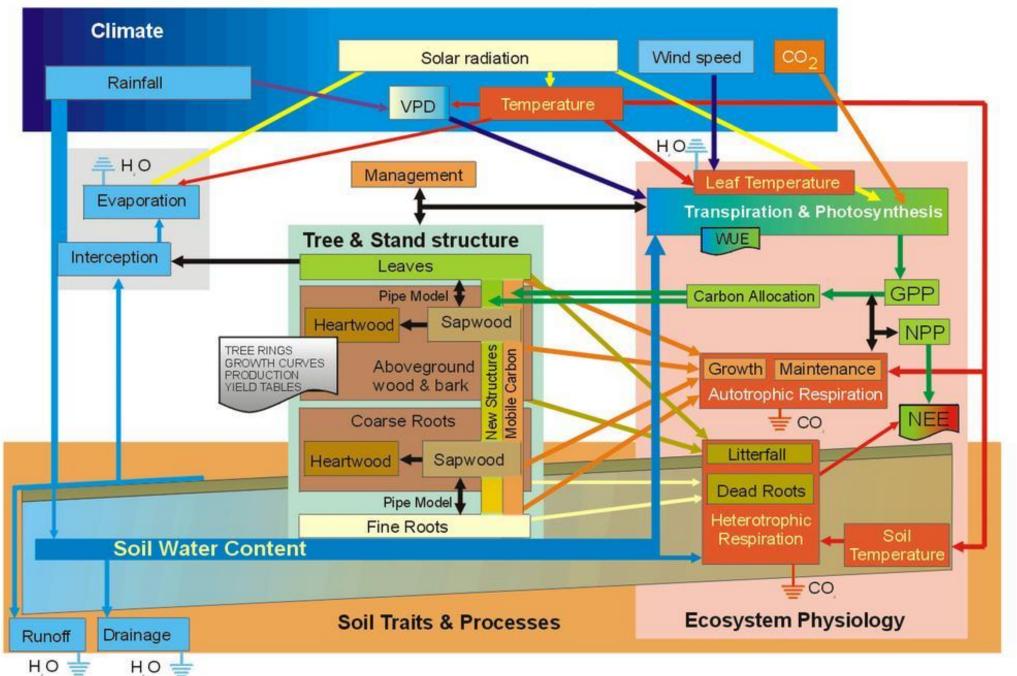
Las variables climáticas en los modelos de procesos

- Radiación solar.
- Temperatura, precipitación, presión de vapor de agua en el aire, velocidad del aire y el generador de Clima de GOTILWA+.
- 3. Evapotranspiración potencial.
- 4. El CO2 atmosférico.

Principales procesos ecofisiológicos

- 1. Absorción de la radiación solar en las copas, balance energético y temperatura foliar.
- 2. Fotosíntesis y conductancia estomática.
- 3. Producción (bruta y neta), respiración autotrófica, asignación de carbono y formación de nuevos tejidos.
- 4. Fenología: renovación de hojas y de raíces finas y duración del período vegetativo.

Estructura del árbol y de la masa

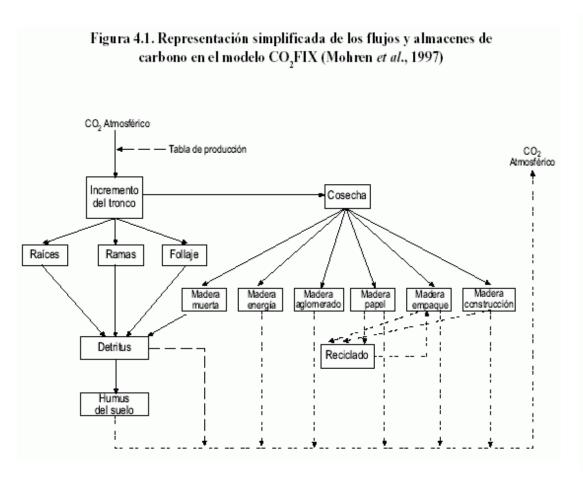

- 1. La madera, estructura, función, formación y mantenimiento.
- 2. Estructura de la copa y flujos hídricos.
- 3. Interacciones que dependen de la densidad de la masa: mortalidad y autoaclareo.

Procesos del suelo

- 1. Reserva de agua drenaje y otros flujos hídricos del suelo.
- Aportes de hojarasca.
- 3. Mortalidad de las raíces finas.
- 4. Respiración heterotrófica, la descomposición de la materia orgánica en el suelo.

Cambio climático y gestión adaptativa

- 1. La respuesta del bosque al cambio climático.
- 2. Gestión adaptativa como respuesta al cambio climático.
- 3. Técnicas de optimización: el algoritmo "swarm particle" y su aplicación a la gestión forestal adaptativa.


Algunos ejemplos de modelos de procesos

- Physiological Principles Predicting Growth (3P-G). Ver: Landsberg, J.J. y Waring, R.H. (1997) A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management 95 (3): 209-228.
- **FORECAST.** Ver: Kimmins, J.P., Mailly, D., Seely, B. (1999) Modelling forest ecosystem net primary production: the hybrid simulation approach used in FORECAST. Ecological Modelling 122: 195 224.
- **CABALA.** Ver: Battaglia, M., Sands, P.J., White, D. y Mummery D. (2004) CABALA: a linked carbon, water and nitrogen model of forest growth for silvicultural decision support. Forest Ecology and Management 193: 251–282.
- **GOTILWA+**. Ver: Nadal Sala, D., Sabaté, S. y Gracia C. (2013) GOTILWA+: un modelo de procesos que evalúa efectos del cambio climático en los bosques y explora alternativas de gestión para su mitigación. Ecosistemas 22(3): 29-36.

Síntesis: modelos basados en procesos

- Son representaciones matemáticas de los sistemas biológicos que incorporan nuestro conocimiento de los mecanismos fisiológicos y ecológicos en los algoritmos de predicción.
- Modelan los procesos del crecimiento, teniendo como entrada la luz, la temperatura y los niveles de nutrientes en el suelo, y modelando la fotosíntesis, la respiración y la asignación de los fotosintatos a las raíces, tallos y hojas.
- Suelen requerir datos complejos y difíciles de obtener.

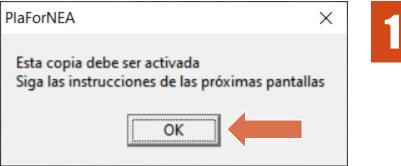
CO₂Fix: modelo simple de contabilidad de carbono

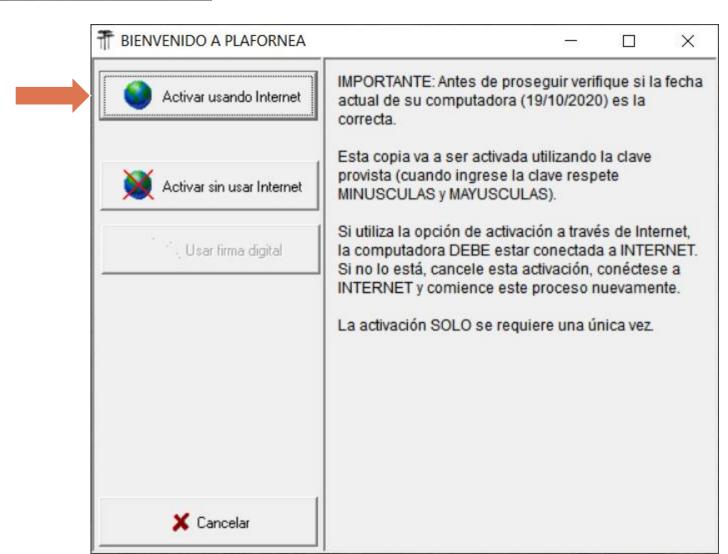
plantación y b) figura de la captura de carbono en un rodal. Eje X=años, eje Y=Mg(10'q=1 ton). Balance de carbono en la plantación 2000000 1500000-1000000 500000 75 100 125 150 175 200 225 250 275 -Biomasa [Mg]---Suelo [Mg]---Productos [Mg]---Total [Mg] Balance de carbono en un rodal 250 200-150 100 125 150 175 200 225 250 275 - Biomasa [Mg/ha] -- Suelo [Mg/ha] -- Productos [Mg/ha] -- Total [Mg/ha]

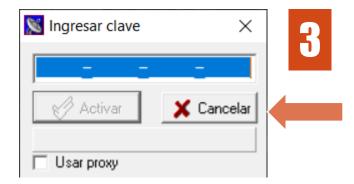
Figura 4.2. Despliegue gráfico: a) figura de la estimación de captura potencial de carbono en toda la

Bibliografía

- Juárez de Galindez, M., Giménez, A.M., Ríos, N. y Balzarini, M. (2005). Modelación de crecimiento en *Prosopis alba* Griseb. empleando dos modelos biológicos. https://fcf.unse.edu.ar/archivos/quebracho/q12-03-Modelacion.pdf
- Arnoni Costa, E., Guimarães Finger, C.A., Schneider, P.R., Hess, A.F., Liesenberg, V. y Tagliapietra Schons, C. (2020). Modelado de índices de competencia para *Araucaria angustifolia* en dos sitios en el sur de Brasil. http://dx.doi.org/10.4067/S0717-92002020000100065
- Vargas-Larreta, B., Corral-Rivas, J., Aguirre-Calderón, O. y Nagel, J. (2010) Modelos de crecimiento de árbol individual: Aplicación del Simulador BWINPro7. https://www.redalyc.org/pdf/617/61718402006.pdf
- Nadal Sala, D., Sabaté, S. y Gracia C. (2013) GOTILWA+: un modelo de procesos que evalúa efectos del cambio climático en los bosques y explora alternativas de gestión para su mitigación. https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/856
- Schelhaas, M.J., van Esch, P.W., Groen, T.A., de Jong, B.H.J., Kanninen, M., Liski, J., Masera, O., Mohren, G.M.J., Nabuurs, G.J., Palosuo, T., Pedroni, L., Vallejo, A., Vilén, T. (2004). CO2FIX V 3.1 description of a model for quantifying carbon sequestration in forest ecosystems and wood products. http://dataservices.efi.int/casfor/models.htm


PlaForNEA


¿Qué es?


- es un **simulador**
 - Permite estimar el crecimiento y producción a nivel rodal de las principales especies forestales implantadas en la Mesopotamia argentina:
 - Pinus taeda,
 - Eucalyptus grandis,
 - Pinus elliottii y,
 - Araucaria angustifolia.

¿Qué resultados produce?


- Tabla de producción esperada.
- Distribuciones diamétricas.
- Volúmenes por productos definidos según diámetro en punta fina y largo.
- Estimación de ingresos e indicadores financieros de cada simulación.

