
Unidad Didáctica Número 6: Hormonas. Reguladores vegetales.

Conceptos generales. Regulación génica y sitios de acción. Fenómenos de correlación. Auxinas. Giberelinas. Citocininas. Etileno. Ácido abscísico y otras hormonas. Estructura química; síntesis y traslado. Movimiento en las plantas: nutación, tropismos, nastismos y taxismos. Ritmos endógenos. Interacción entre hormonas.

Hormonas y reguladores

- Las hormonas son compuestos naturales de bajo PM con efectos pleiotrópicos
- Actúan como mensajeros químicos en concentraciones muy bajas
- Se sintetizan y trasladan
- No hay tejidos especializados para la síntesis
- Actúan según un balance con otras hormonas

- Los reguladores de crecimiento son sintetizados artificialmente
- •Tienen funciones similares a las hormonas

Hormonas

Reguladores

Auxinas

Giberelinas

Etileno

Citocininas

ABA

ácido Jasmónico

ácido Salicílico

Fitoalexinas

Brasinosteroides

Poliaminas

Estrigolactonas

Tipo auxínicos (AIA; AIB; AIP; 2,4D; 2,4 DB)

Giberelinas

Etileno (Ethrel o Ethephon)

Citocininas (Cinetina, BA,

BAP)

Inhibidores (Cycocel o

CCC, ALAR o B9, HM,

CIIPC)

Síntesis:

- Meristemas apicales
- Ápices de coleoptilos
- Tallos y hojas jóvenes en expansión
- Frutos en desarrollo
- Semillas
- Tejidos en rápido crecimiento y división

Transporte polar:

 Las auxinas son transportadas por medio de un mecanismo dependiente de energía (ATP), desde el ápice hasta la base.

Funciones principales:

- Actúan en la mitosis, produciendo el crecimiento de la planta mediante división y el alargamiento de sus células.
- •Inhiben el crecimiento de las yemas laterales, favoreciendo el de las yemas apicales.
- •Promueven la iniciación de las raíces en las estacas de tallo (herbáceas o leñosas).
- •Inducen partenocarpia y regulación del crecimiento del fruto.
- Determinan el sexo en cucurbitáceas.
- Retardan la caída de hojas y frutos, según la dosis.

Aplicaciones comerciales:

- Inducción de partenocarpia en frutos
- Propagación vegetativa y enraizamiento de estacas
- Acción herbicida
- Inhibición de brotación de yemas en tubérculos de papa
- Floración sincronizada

La estimulación de la iniciación de raíces adventicias constituyó la primer aplicación práctica y actualmente es usada por viveristas para la propagación vegetativa de las plantas.

Las auxinas más utilizadas en el enraizamiento de estacas son: ANA, AIB, AIP, 2,4-D.

Propagación vegetativa:

Es la reproducción empleando partes vegetativas de la planta original o planta madre, las plantas obtenidas son iguales a la planta de la cual se obtuvo el material (se obtienen clones).

Puede ocurrir mediante la formación de raíces y tallos adventicios o por medio de la unión de partes vegetativas de diferentes individuos, por injerto.

En cultivos asépticos (cultivo de tejidos in vitro) se han regenerado plantas completas a partir de células individuales.

Métodos de propagación vegetativa:

Propagación por estacas

Propagación por injerto

Propagación por acodos

Micropropagación

Propagación vegetativa por enraizamiento de estacas

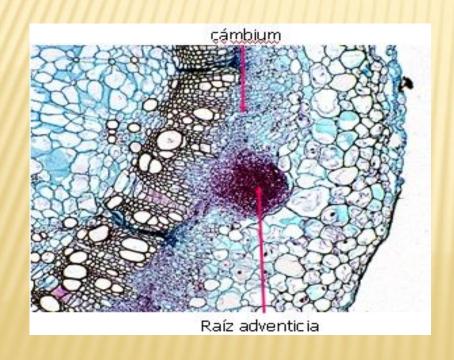
Estaca: es una porción u órgano vegetativo de una planta madre que se corta con fines de propagación, hay estacas de tallo, estacas de raíz, estacas de hoja.

Fitómero: es la menor porción de estaca, debe tener un nudo (con su yema axilar correspondiente) y la porción de entrenudo superior e inferior.

Solo es necesario que se forme un nuevo sistema de raíces adventicias, ya que existe un sistema caulinar en potencia, una yema.

Propagación vegetativa por enraizamiento de estacas

Para que se produzcan raíces en las estacas se deben colocar en condiciones ambientales favorables (alta HR) y tener un adecuado balance hormonal



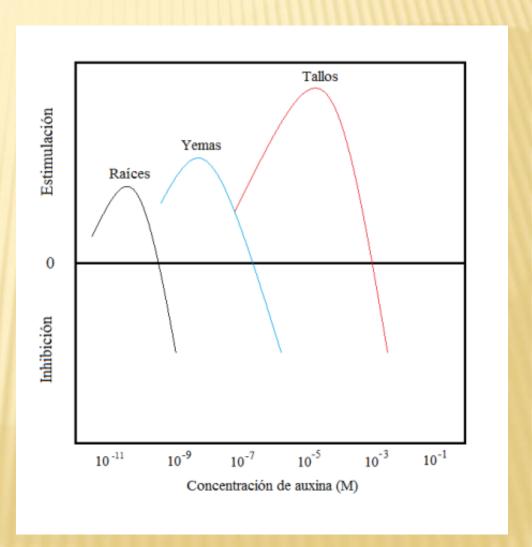
En las plantas leñosas perennes, las raíces adventicias se originan principalmente en el parénquima xilemático y floemático, pero a veces lo hacen de otros tejidos como los radios medulares, cambium, etc.

En las plantas herbáceas se originan de células parenquimáticas fuera de los haces vasculares y entre ellos.

Métodos utilizados para el enraizamiento con auxinas

En solución:

- lento: 10 a 200 ppm, 24 a 48 horas
- rápido: 4000 a 10000 ppm, algunos segundos

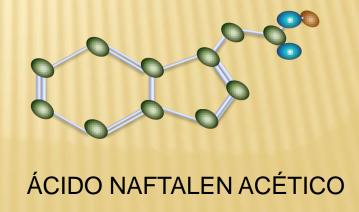

En pasta: con lanolina, 4000 a 6000 ppm

En polvo: se solubiliza en alcohol y se mezcla con talco, 4000 a 6000 ppm

La respuesta a la auxina depende de la concentración en cada órgano, presentando concentraciones de respuesta estimulante o inhibitoria del proceso.

Cada órgano presenta una sensibilidad diferente a la hormona que produce la máxima respuesta, las raíces son más sensibles que las yemas, y éstas más sensibles que los tallos.

Esta sensibilidad del tejido u órgano puede variar con la edad y las condiciones ambientales.



FACTORES ENDÓGENOS QUE AFECTAN LA FORMACION DE RAICES

- -Edad y crecimiento de las ramas: ya sean herbáceas, semileñosas o leñosas; o ramas laterales o terminales.
- -Edad de la planta madre: generalmente a mayor edad, menor capacidad de enraizamiento.
- -Estado de desarrollo de la planta madre: en general, en floración es cuando las especies tienen menor capacidad de enraizar.
- -Ubicación de la rama en la planta madre y la ubicación de la estaca en la rama (ya sea cercana al ápice o basal).
- -Presencia de yemas u hojas en la estaca: en algunas especies es favorable la presencia de hojas al ser fuente de auxinas.
- Época del año en que se extraen las estacas: en las estacas leñosas se recomienda recolectarlas durante el período de reposo.

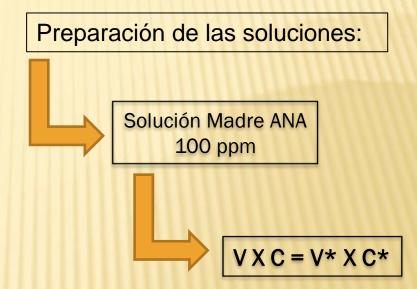
OBJETIVO DEL TRABAJO PRÁCTICO

Determinar el efecto de las auxinas en el enraizamiento de estacas y determinar la concentración óptima de éstas en dicho proceso.

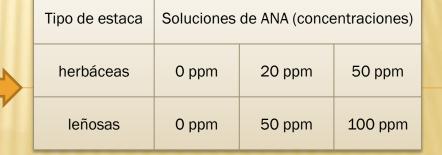
MATERIALES:

Estacas herbáceas

Estacas leñosas



Recipientes: bandejas o macetas

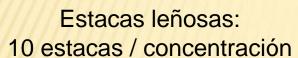

Sustrato inerte: perlita, vermiculita o mezcla de ellos

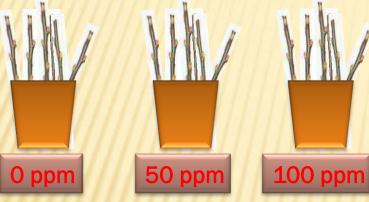
METODOLOGIA:

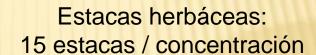
En este trabajo práctico se utilizará el método lento en solución.

Hacer los cálculos para preparar 50 ml de cada una de las diluciones de la solución de ANA

1er paso: colocar las estacas en agua corriente, durante 24 horas para eliminar posibles inhibidores hidrosolubles


2do paso: colocar las estacas en las soluciones de ANA preparadas, durante 48 horas




Luego de 48 horas en las soluciones de ANA se pasan a bandejas o macetas con el sustrato inerte + elevada HR

RESULTADOS:

20 días después días de iniciado el ensayo, se descalzan las estacas herbáceas, se evalúan las distintas variables, y con los valores promedio de cada una de ellas se completan las siguientes tablas:

	Soluciones de ANA (ppm)		
ESTACAS HERBÁCEAS	0	20	50
estacas con raíz (%)			
nro. raíces por estaca			
longitud media de raíces (cm)			

	Soluciones de ANA (ppm)			
ESTACAS HERBÁCEAS	0	20	50	
estacas con raíz (%)	30	100	80	
nro. raíces por estaca	6,1	25,4	16,7	
longitud media de raíces (cm)	2,1	4,6	0,9	

40 días después días de iniciado el ensayo, se descalzan las estacas leñosas, se evalúan las distintas variables, y con los valores promedio de cada una de ellas se completan las siguientes tablas:

	Soluciones de ANA (ppm)		
ESTACAS LEÑOSAS	0	50	100
estacas con raíz (%)			
nro. raíces por estaca			
longitud media de raíces (cm)			

	Soluciones de ANA (ppm)		
ESTACAS LEÑOSAS	0	50	100
estacas con raíz (%)	10	50	80
nro. raíces por estaca	3,6	8,3	14,5
longitud media de raíces (cm)	3,5	5,3	7,6

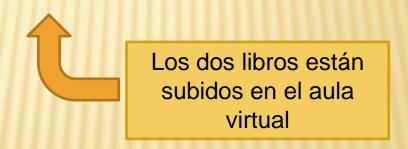
CONCLUSIONES:

- La aplicación exógena de auxinas estimuló la formación de raíces adventicias en estacas herbáceas y leñosas
- Existe una concentración óptima para el enraizamiento de estacas herbáceas y otro para las leñosas
- •El uso de sustancias enraizantes es una práctica sencilla que permite la propagación vegetativa de muchas especies de importancia económica.

Ejemplos de plantas respecto a su facilidad de enraizamiento

- * 1- plantas en las que la auxina no es limitante: se cortan las estacas, se colocan en condiciones ambientales adecuadas y enraizan (menta, romero, geranio, jazmín, *Impatiens, Populus, Salix*). Éstos dos últimos géneros tienen raíces preformadas de raíz, que facilitan el enraizamiento.
- 2- plantas en las que la auxina es limitante: la hormona se aplica exógenamente y enraizan (lavanda, rosa, hortensia, Acacia, Acer, Eucalyptus, Fraxinus, Grevillea, Ulmus, Pinus, Quercus)
- 3- plantas que incluso con el agregado de auxinas no enraizan (Abies, Cedrus)

Ejemplo de uso de microestacas para la producción de álamo en Canadá (*Populus deltoides, P. balsamifera, P. trichocarpa*)



ALGUNAS PREGUNTAS:

- 1- ¿Por qué es necesario mantener las estacas con alta humedad relativa durante el proceso de enraizamiento?
- 2- ¿Existe un efecto de la concentración de la auxina sobre la respuesta? ¿Se pudo observar ésto en el ensayo realizado? ¿Por qué?
- 3- ¿Por qué en la práctica se utilizan reguladores de crecimiento de tipo auxínico y no hormonas como el AIA?
- 4- ¿Por qué las estacas se dejan en la solución de hormona 24 a 48 hs y no mas tiempo?

Lecturas recomendadas:

- Sisaro, D.; Hagiwara, J. C. Propagación vegetativa por medio de estacas de tallo. Ediciones INTA, 2016.
- Hartmann, H. T.; Kester, D. E. 1976. Propagación de plantas, principios y prácticas. 5 ed. México: Cia. Editorial Continental, 810 p.

