

Tecnología de aplicación de agroquímicos curso 2020

Objetivos

- Comprender la complejidad del proceso
- Identificar los diseños básicos
- Comprender los principios de formación de gotas y las características de la población de gotas
- Valorar la uniformidad de aplicación
- Seleccionar pastillas de pulverización

Pulverizaciones en la Argentina

- Situación legal y política
- Tecnología de aplicación
- Calidad de aplicación
- Aspectos ambientales

Aspectos legales

Argentina= Republica federal

- Ley Nacional
- Leyes Provinciales
- Ordenanzas municipales

- No hay ley nacional de agroquímicos
- Cada provincia tiene su propia ley
- Cada comuna dicta sus propias ordenanzas

Facultad de Ciencias Agrarias y Forestales UNIVERSIDAD NACIONAL DE LA PLATA

Argentina= Republica federal

Resultados:

- No hay presupuestos mínimos
- Certificación de maquinas
- Licencias de operadores
- Capacitación de operadores

Informes de organismos de Cercias Agrarias y forestales oficiales y privados

Parque de Maquinaria

- 12000 a 17000 equipos AP (¿?)
- 85% de fabricación nacional
- 1200 Pulverizadores AP por año (¿?)
- Se exporta 25% (¿?)

Parque de Maquinaria

- Nivel tecnológico
- 100% Controlador de Pulverización
- 100% Barra de luces GPS
- 80% Corte automático por sección
- 35% Piloto automático
- 95% Bomba centrífuga

Botalones de equipos nuevos

- Portapicos multiples a 35 cm
- Portapicos simples a 52.5 cm
- Boquillas standard abanico plano
- Boquillas de cono hueco
- Bajo % boquillas de baja deriva y de aire inducida

Contratismo

- Comienza en los 80 con máquinas nacionales
- Comando manuales
- Luego eléctricos
- Finalmente electrónicos en los 90
- Hoy automatización completa

¿Cuánto ha cambiado el proceso?

Facultad de Ciencias Agrarias y Forestales UNIVERSIDAD NACIONAL DE LA PLATA

Expo agro 2020

Weedit, 2014

Salta, 2014

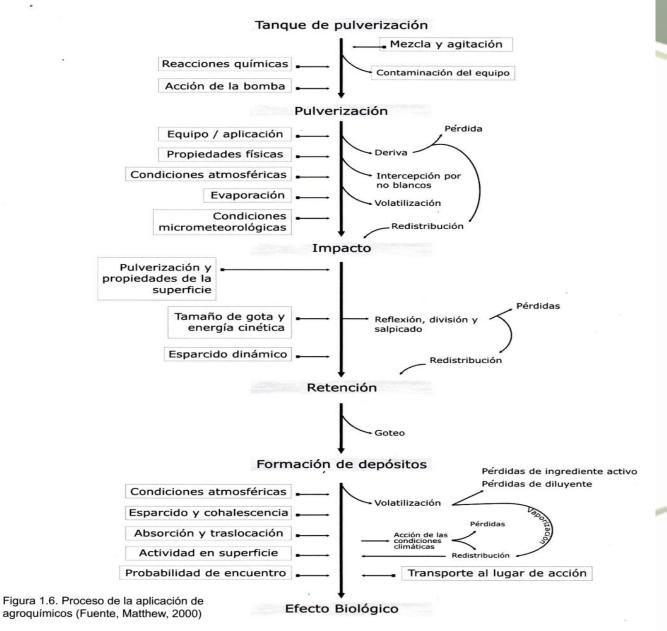
Facultad de Ciencias Agrarias y Forestales UNIVERSIDAD NACIONAL DE LA PLATA

Delta, 2013

Tecnología de Aplicación Tecnología de Aplicación

Tecnología de Aplicación

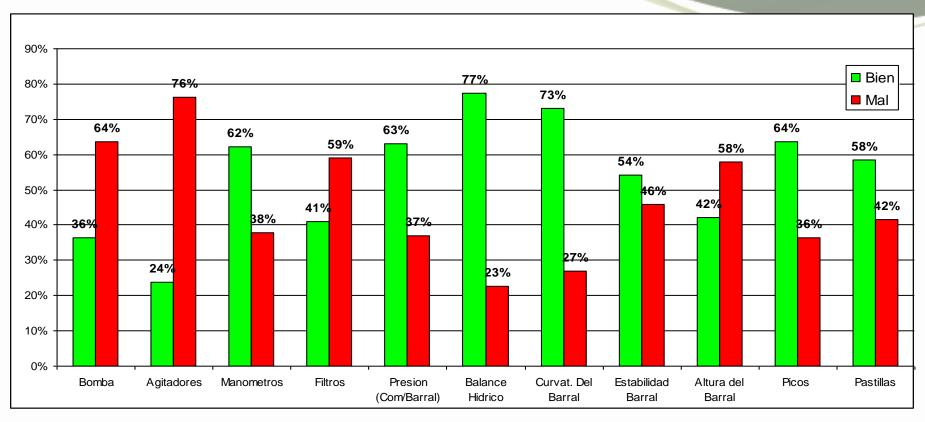
Facultad de Ciencias Agrarias y Forestales UNIVERSIDAD NACIONAL DE LA PLATA


			_	_			
EQUIPAMIENTO	METODOLOGIA	СШМА			OB JETIVO	PRODUCTO	OPERADOR
Diseño del equipo	Técnica de	Viento			Mofología de la	Modo de acción	Aptitud
	aplicación	Velo	cid	ad	canopia		•
Asistencia de aire	_				_	Tim ing	Actitud
	Velocidad de	Din	ecci	δn	Estadio de cultivo		
Orientación	avance					Formulación	
Volúmen		Temperat	ıra		Densidad de follaje		
Velocidad	Adecuación de la					Densidad	
	aplica ción al	Hum edad Re	elati	/a	Objetivo - Blanco		
Deflectores	cultivo					Adyuvantes	
					Tamaño		
Collidad do	Volum en de						
Calidad de	campo				Ubicación		
aplicación	Dania				Obicación		
Distribución	Dosis						
Tam año de gota				L			
Orientación de				7			
boquillas							

Ineficiencia del producto Costo financiero Daños a terceros Daños ambientales PÉRDIDA

Menor productividad Pérdidas económicas

¿Es un proceso eficiente? Pricias Agrarias y Forestales



Balestrini – Control de equipos

- Inspección visual del estado de mantenimiento y limpieza del equipo.
- Relevamiento de la indumentaria personal reglamentaria.
- Revisión de los componentes de seguridad.
- Control del caudal, presión y mantenimiento de la bomba.
- Inspección del sistema de agitación.
- Verificación del estado y mantenimiento del tanque principal, de los secundarios y sus componentes.
- Control de manómetros y transductores de presión.
 Control y calibración de computadoras, comandos, banderilleros, etc.
- Revisión del estado de filtros.
- Verificación del mantenimiento y estado del barral.
 Control del balance hídrico del barral.
- Verificación del estado del los portapicos.
- Control del estado de las pastillas.
- Verificación de la calidad de aplicación con uso de tarjetas hidrosensibles y marcadores

Resultado de los chequeos

Mal Bien Mal Bien Bomba: 64 % 36 % Filtros: 59 % 41 %

Agitadores: 76 % 24 % Picos: 36 % 64 %

Manómetros: 38 % 62 % Pastillas: 42 % 58 %

Brandsen, 2013

Facultad de Ciencias Agrarias y Forestales UNIVERSIDAD NACIONAL DE LA PLATA

Criterios para clasificar los equipos de aplicación

Formación de la gota	Transporte de la gota	Denominación
	Energía cinética	Pulverizador
Presión de líquido		hidráulico
	Corriente de aire	Pulverizador
		hidroneumático
Corriente de aire	Corriente de aire	Pulverizador
		neumático
	Viento atmosférico	
Fuerza centrífuga		Pulverizador
	Corriente de aire	centrífugo
Gases de escape	Condensación	Termonebulización
Campo	Campo	Pulverizador
electromagnético	electromagnético	electrodinámico

Pulverizadores hidráulicos de Ciencias Agrarias y Forestales

Pulverizadores hidro-neumáticos PLATA

Pulverizadores termo-neumáticos

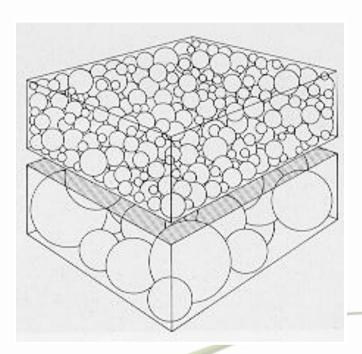
- Pulverización
- Corriente de aire / calor
- **Transporte**
- Condensación en nube
- Aplicaciones en recintos cerrados o formando nubes
- Mínima dimensión de las gotas ($< 50 \mu m$)
- Necesidad de contar con atmósfera húmeda y en calma

POBLACION DE GOTAS ERSIDAD NACIONAL DE LA PLATA

Características

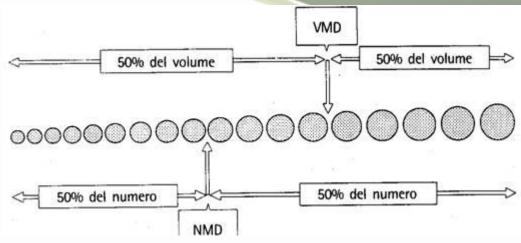
- Independientemente de la técnica utilizada en la formación de gotas, la población no presenta una distribución normal.
- Predominan las gotas pequeñas frente a las grandes.
- El volumen del líquido que contienen las gotas pequeñas es mucho menor que el de muy pocas gotas grandes.
- No es importante caracterizar a una población de gotas en función de su diámetro aritmétrico medio.
- Cada técnica de pulverización consigue una población de gotas en un intervalo de diámetros mayor o menor.

75mm



USO DE PAPEL SENSIBLE

25mm


Análisis de la variación de los diferentes diámetros de las gotas producidas: Espectro de Gotas

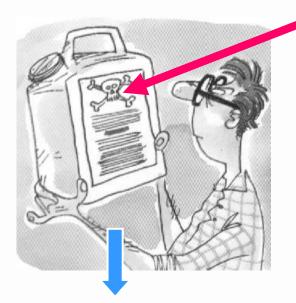
Criterios de Homogeneidad

"Cuanto más uniforme sea el tamaño de las gotas la razón aritmética entre ellos se aproxima más a 1".

Ejemplos:

Electrodinámico	6 ml/min	25 kV	1.04
Centrífugo	30 ml/min	15000 rpm	1.67
Abanico	800 ml/min	300 kPa	11.2
Neumático	400 ml/min	85 m/s	8.1

Fuente: Matthews, 1992.


Tecnología de Aplicación

APLICACIÓN:

Facultad de Ciencias Agrarias y Forestales UNIVERSIDAD NACIONAL DE LA PLATA

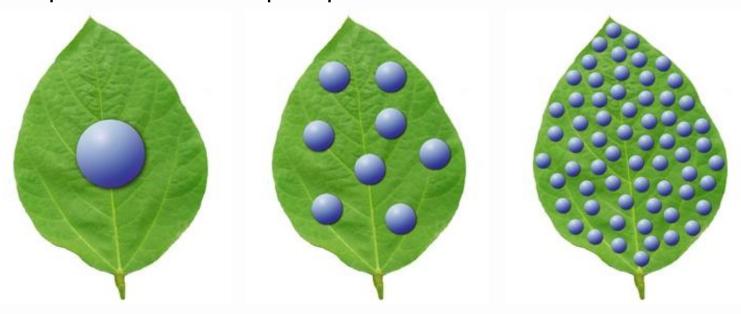
Colocación del <u>producto químico</u> en el <u>blanco</u>.

TIPO DE PRODUCTO:

- Insecticidas
- Herbicidas
- Fungicidas
- Fertilizantes

MODO DE ACCIÓN:

- de Contacto
- Sistémico
- Selectivo
- No Selectivo

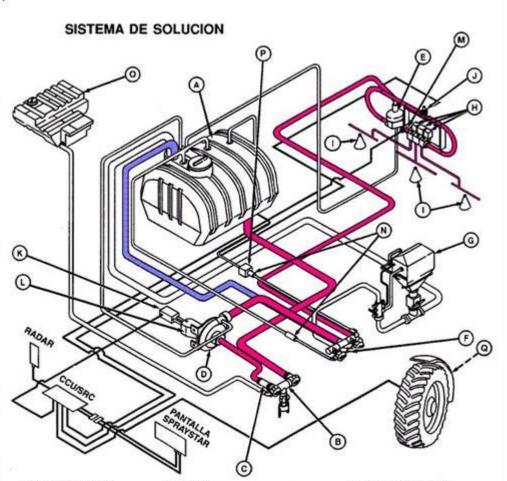

OBSERVACIONES:

- Consultar el rótulo del producto y seguir las recomendaciones del Ingeniero Agrónomo.
- Venta bajo Receta Agronómica.

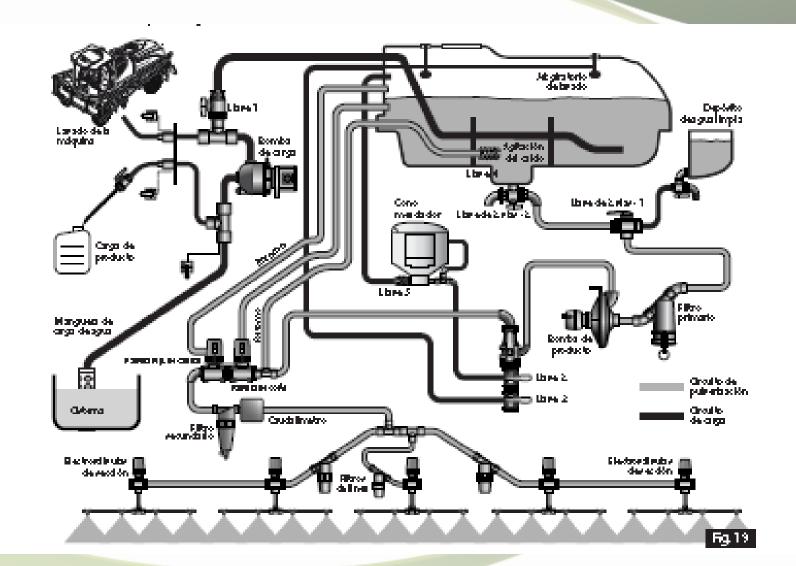
Tecnología de Aplicación

COBERTURA: Número mínimo de impactos por unidad de superfície necesario para producir el efecto deseado.

- Modo de acción del producto (contacto o sistémico).
- Tipo de blanco (suelo, hojas, frutos etc.).
- Tipo de superficie (con o sin cera, etc.).



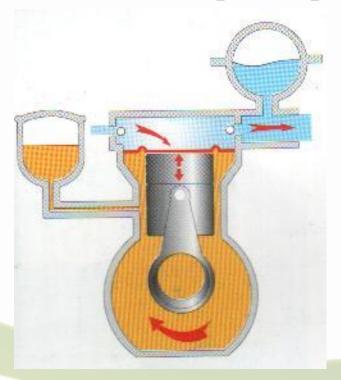
ESQUEMA DEL CIRCUITO HIDRÁULICO DE UN PULVERIZADOR



- A Tanque de solución
- B Colector de solución
- C Tamiz de aspiración
- D Bomba centrifuga
- E Filtro de limpieza automática
- F Colector de presión
- G Eductor
- H Válvulas de corte de barra pulverizadora
- I Boquillas
- J Flujómetro de solución
- K Válvula proporcional
- L Bomba hidráulica

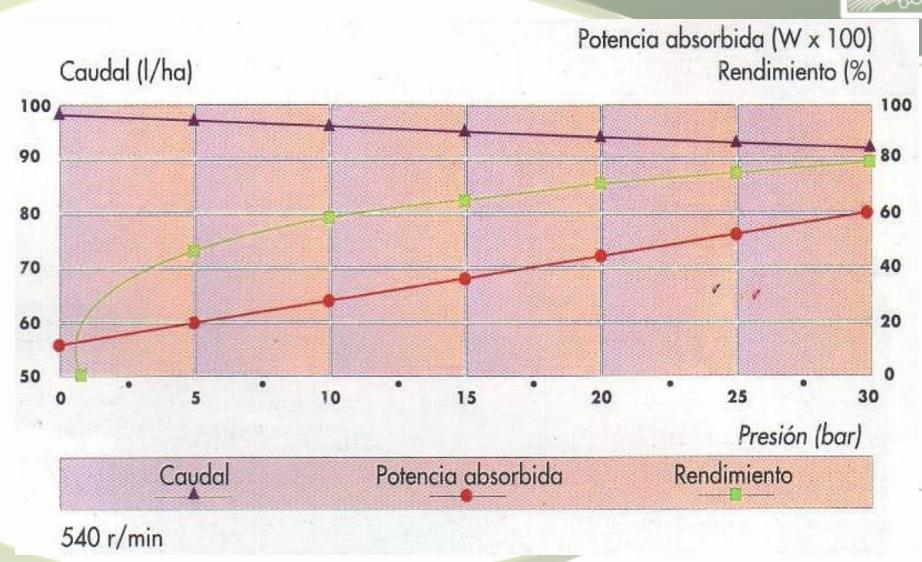
- M Transductor de presión
- N Válvulas de retención
- O Tanque de enjuague
- P Válvula de solenoide de agitador
- Q Sensor de velocidad de ruedas

Facultad de Ciencias Agrarias y Forestales UNIVERSIDAD NACIONAL DE LA PLATA


Bombas:

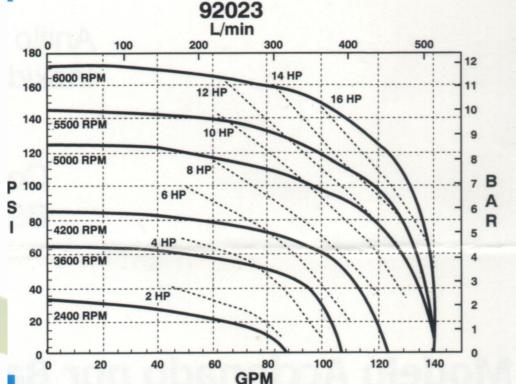
Facultad de Ciencias Agrarias y Forestale: UNIVERSIDAD NACIONAL DE LA PLATA

- 1. Caudal = $\{ Q(1/ha)*Vel(m/seg)*A(m) \} + Ag(1/min) \}$
- 2. Presión: Curva del caudal en función a la presión

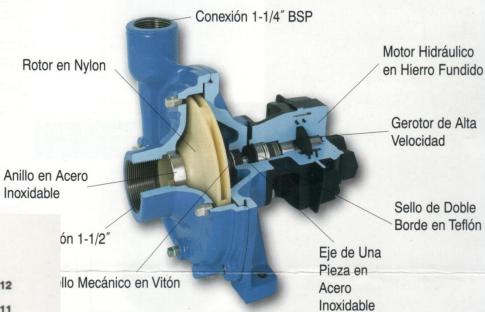

Volumétricas (pistón, pistón membrana, diafragma, rodillos)

Bombas pistón membrana

Facultad de Ciencias Agrarias y Forestales
UNIVERSIDAD NACIONAL DE LA PLATA


Estándar MAP II 2B50

Estándar MAP II 3250 MAP II 3250 F


Opcional MAP II 2B50

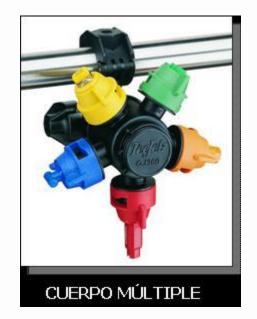
Estándar MAP II 3500 / MAP II 3500 F MAP II 4000 H / C05M0

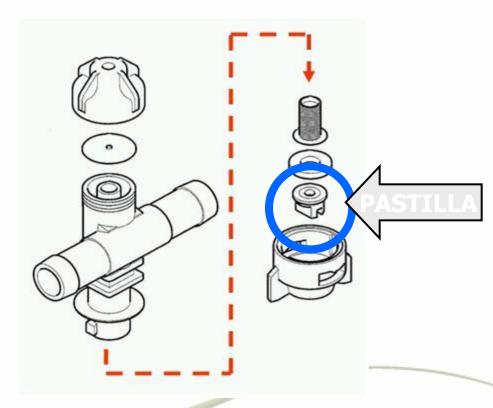
Los equipos Pla, cuentan con bombas centrífugas Hypro, con un caudal máximo libre que va desde 200 l/min a 9 bar hasta 550 l/min a 2 bar de presión en el modelo 93 03 y hasta 810 I/mil a 2 bar en la 9306. En el modelo MAP II 2850 su accionamiento es mediante una correa a través de un embrague electromagnético y se ofrece como opcional el accionamiento hidráulico.

Modelo Accionado Hidraulicamente

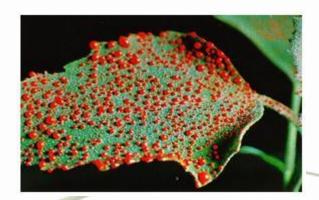
Bombas centrífugas

Boquillas y manómetro and de la plata



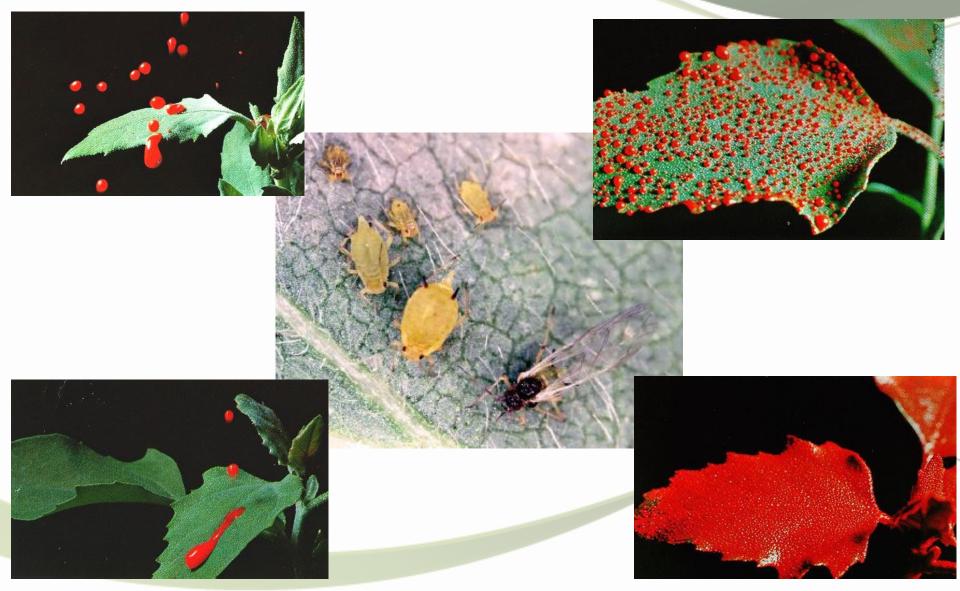


PRODUCIR GOTAS

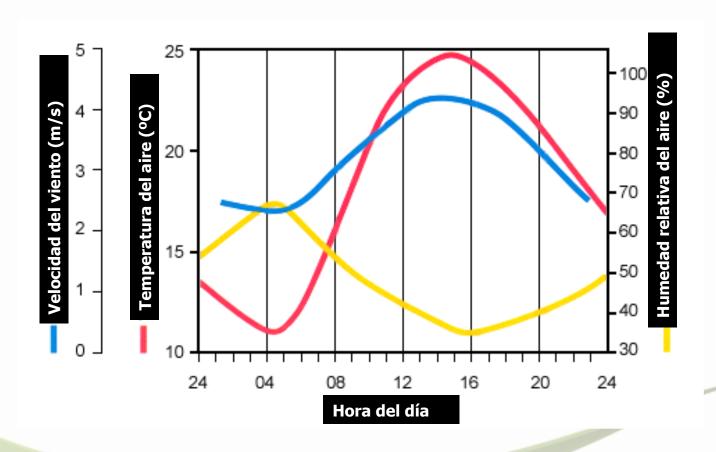


PULVERIZACION

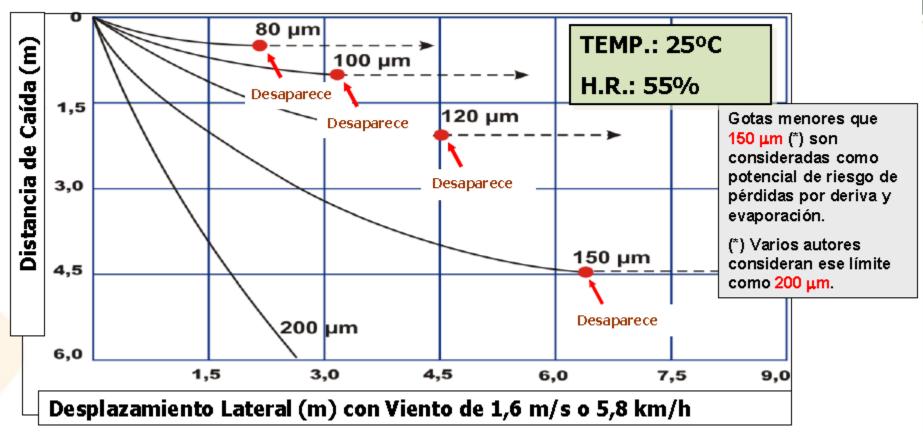
VIENTO
TEMPERATURA
HUMEDAD RELATIVA


COLOCAR EL PRODUCTO EN EL BLANCO

APLICACION

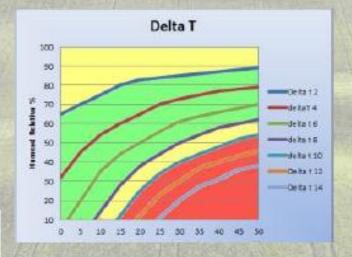


Tecnología de Aplicación



Variación de las Condiciones Meteorológicas a lo largo de un día

Comportamiento de las gotas en diferentes condiciones ambientales



COMPORTAMIENTO DE GOTAS EN DIFERENTES CONDICIONES CLIMATICAS

DeltaT

Riantificación de la R	Livertradon	Califdad de Pulverfzadfon / Delta T(PC)					
Apilicar? Simbolo		Medianas o Rhas	Guessomuy Guess				
SI		Em@2y8	Emre 2y8				
CulDADO	No.	0-208-12	0-208-12				
NO		Wayorque 10	Wayor que 12				

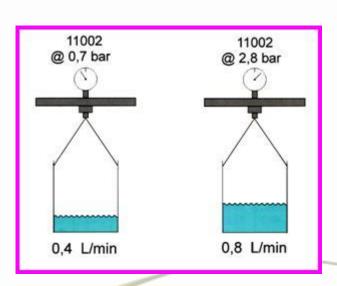
CONDICIONES METEOROLOGICAS QUE AFECTAN LA PULVERIZACIÓN

VIENTO	D _{V0,1}
Hasta 7,2 km/h	≥ 130 µm
Hasta 10,8 km/h	≥ 140 µm
Hasta 12,0 km/h	≥ 160 µm
Hasta 18,0 km/h	≥ 200 µm

Para que sirven las pastillas????

LAS TRES FUNCIONES QUE LAS PASTILLAS DE PULVERIZACION DESEMPEÑAN:

- 1 DETERMINAN CAUDAL (Cantidad)
- 2 PRODUCEN GOTAS DE TAMAÑO DETERMINADO (Calidad)
- 3 PROPORCIONAN UNA DISTRIBUICION DEL LIQUIDO PULVERIZADO (Calidad)



EL CAUDAL DE UNA PASTILLA (L/min) DEPENDE DE:

TAMAÑO DEL ORIFICIO PRESION DE TRABAJO

Relación Matemática:

$$\frac{V_1}{V_2} = \frac{\sqrt{P_1}}{\sqrt{P_2}}$$

$$V1 = (0.7 \div 2.8)^{1/2} \times 0.8$$
 $V1 = (0.25)^{1/2} \times 0.8$

$$V1 = 0.5 \times 0.8$$
 $V1 = 0.4$

Mi incognita es a que presión está pulverizando mi barra?

Mi manómetro no es confiable!

Solo tengo una pastilla nueva...

Modelo 11002

Por catalogo a 2 bar pulveriza 0.64 I/min

Si en un minuto logro 1 litro ..

$$\frac{V_1}{V_2} = \frac{\sqrt{P_1}}{\sqrt{P_2}}$$

P2 =
$$(1.0 \div 0.64)^2 \times 2$$
 P2 = $(1.56)^2 \times 2$
P2 = 2.44 x 2 V1 = 4.88 bares

Uso de tablas del Catálogo TeeJet (XRTeeJet®):

Para caudal de 0,67 L/min

Tasa = 100 l/ha

Velocidad = 8 km/h

A ()	(S)	I/min					(1/1	10 Z	50	cm	7	
@ (B)	bar	1/111111	4 km/h	5 km/h	6 km/h	7 km/h	8 km/h	10 km/h	12 km/h	16 km/h	18 km/h	20 km/h
XR8001 XR11001 (100)	1.0 1.5 2.0 3.0 4.0	0.23 0.28 0.32 0.39 0.45	69.0 84.0 96.0 117 135	55.2 67.2 76.8 93.6 108	46.0 56.0 64.0 78.0 90.0	39.4 48.0 54.9 66.9 77.1	34.5 42.0 48.0 58.5 67.5	27.6 33.6 38.4 46.8 54.0	23.0 28.0 32.0 39.0 45.0	17.3 21.0 24.0 29.3 33.8	15.3 18.7 21.3 26.0 30.0	13.8 16.8 19.2 23.4 27.0
XR80015 XR110015 (100)	1.0 1.5 2.0 3.0 4.0	0.34 0.42 0.48 0.59 0.68	102 126 144 177 204	81.6 101 115 142 163	68.0 84.0 96.0 118 136	58.3 72.0 82.3 101 117	51.0 63.0 72.0 88.5 102	40.8 50.4 57.6 70.8 81.6	34.0 42.0 48.0 59.0 68.0	25.5 31.5 36.0 44.3 51.0	22.7 28.0 32.0 39.3 45.3	20.4 25.2 28.8 35.4 40.8
XR8002 XR11002 (50)	1.0 1.5 2.0 3.0 4.0	0.46 0.56 0.65 0.79 0.91	138 168 195 237 273	110 134 156 190 218	92.0 112 130 158 182	78.9 96.0 111 135 156	69.0 84.0 97.5 119 137	55.2 67.2 78.0 94.8 109	46.0 56.0 65.0 79.0 91.0	34.5 42.0 48.8 59.3 68.3	30.7 37.3 43.3 52.7 60.7	27.6 33.6 39.0 47.4 54.6
XR8003 XR11003 (50)	1.0 1.5 2.0 3.0 4.0	0.68 0.83 0.96 1.18 1.36	204 249 288 354 408	163 199 230 283 326	136 166 192 236 272	117 142 165 202 233	102 125 144 177 204	81.6 100 115 142 163	68.0 83.0 96.0 118 136	51.0 62.3 72.0 88.5 102	45.3 55.3 64.0 78.7 90.7	40.8 49.8 57.6 70.8 81.6

TABLA DE CAUDAL DE PUNTAS XR TEEJET® Y LA CALIDAD DE LA PULVERIZACION

Para un caudal de 0,66 L/min

TAB	TABLA DE CAUDAL (L/min) DE PUNTAS XR TeeJet®												
PUNTA		PRESION DE TRABAJO (BAR)											
NÚMERO	1,0	1,5	2,0	2,5	3,0	3,5	4,0						
XR11001	0,23	0,28	0,32	0,36	0,39	0,43	0,46						
XR110015	0,34	0,42	0,48	0,54	0,59	0,64	0,68						
XR11002	0,46	0,56	0,64	0,72	0,79	0,85	0,91						
XR11003	0,68	0,84	0,97	1,08	1,18	1,28	1,37						
XR11004	0,91	1,12	1,29	1,44	1,58	1,71	1,82						
XR11005	1,14	1,39	1,61	1,80	1,97	2,13	2,28						
XR11006	1,37	1,67	1,93	2,16	2,37	2,56	2,74						
XR11008	1,82	2,23	2,58	2,88	3,16	3,14	3,65						

EG

MG

VOLUMEN o TASA DE APLICACION:

Volumen de caldo suficiente para proveer la cobertura adecuada del blanco. Ese volumen es definido como TASA o **VOLUMEN DE APLICACION** en litros por hectárea (L/ha).

Eso depende de:

VELOCIDAD DEL PULVERIZADOR

ESPACIAMIENTO DE BOQUILLAS EN LA BARRA

CAUDAL DE LAS PASTILLAS

Tasa de Aplicación: Calibración de la Pulverizadora

FORMULA BASICA PARA LA CALIBRACION DE PULVERIZADORAS

Cómo se mejora la capacidad de capacidad de

- $CT_{ef} = A \times Vr \times ef. Op.$
 - Aumentar el ancho de trabajo
 - Aumentar la velocidad de trabajo
 - No superponer
 - Disminuir la pérdidas de tiempo
 - en las cabeceras
 - de recarga de agua y producto

Aumentar el ancho de trabajo

- Terrenos uniformes
- Estabilidad del botalón
- Tecnología de materiales
- Aumento del número de secciones
- Aumento de la capacidad del tanque
- Aumento de la capacidad de la bomba
- Mejora de la logística de abastecimiento de agua

Aumento de la velocidad de labor

- Mejora de los sistemas de compensación de oscilaciones
- Mejoras en la estabilidad y capacidad de frenado de las máquinas
- Incorporación de sistemas de variación de la tasa de aplicación y el caudal de las pastillas
- Mejoras en los sistemas de suspensión de la máquina

Disminución de las pérdidas de tiempo

- Disminución de tiempos muertos
- Aumento de la capacidad del tanque
 - Aumento de la superficie de apoyo
 - Mejoras en la estabilidad de la máquina
- Disminución de la tasa de aplicación
 - Trabajos con productos más concentrados
 - Cambios en la cobertura
 - Mejoras en la eficiencia de aplicación
 - Cuidado de los riesgos ambientales

Tasa de aplicación fija o variable?

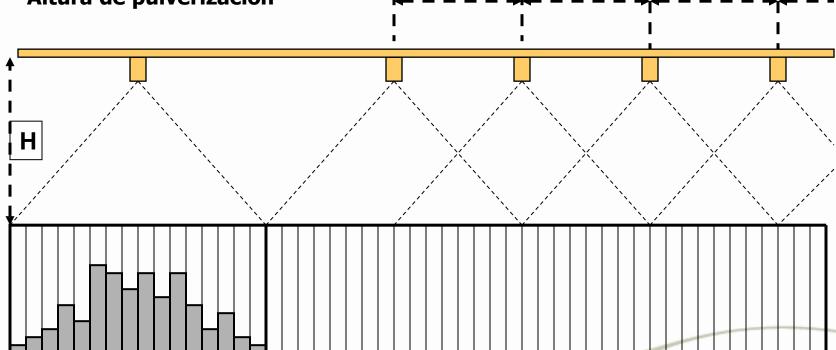
- Tasa Fija
 - Caudal constante
 - Velocidad constante
 - Compensación de caudal por variaciones de la velocidad
- Tasa Variable
 - Modificación del caudal a velocidad constante
 - Inyección directa en la línea
 - Selección y combinación de pastillas
 - Pulsos de amplitud modulada

TABLA DE CAUDAL DE PUNTAS TURBO TEEJET Y LA CALIDAD DE **PULVERIZACION**

NUMERO		Presión en bar										
DE LA	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6	
PASTILLA			С	audal en L	itros por l	Minuto (L/	min)					
TT11001	0.23	0.28	0.32	0.36	0.39	0.43	0.46	0.48	0.50	0.53	0.55	
TT110015	0.34	0.42	0.48	0.54	0.59	0.64	0.68	0.72	0.76	0.80	0.83	
TT11002	0.46	0.56	0.64	0.72	0.79	0.85	0.91	0.96	1.02	1.08	1.12	
TT110025	0.57	0.70	0.81	0.90	0.99	1,.07	1.14	1.21	1.28	1.34	1.40	
TT11003	0.68	0.84	0.97	1.08	1.18	1.28	1.37	1.45	1.52	1.59	1.67	
TT11004	0.91	1.12	1.29	1.44	1.58	1.71	1.82	1.93	2.04	2.14	2.23	
TT11005	1.14	1.39	1.61	1.80	1.97	2.13	2.28	2.41	2.54	2.67	2.79	
TT11006	1.37	1.68	1.94	2.16	2.37	2.56	2.74	2.91	3.06	3.22	3.35	
TT11007	1.82	2.23	2.58	2.8	3.16	3.40	3.65	3.87	4.08	4.28	4.47	

MF MG

TT110015 a 4,0 bar: M (F)
TT11002 a 2,0 bar: G (M)
TT11003 a 1,0 bar: MG

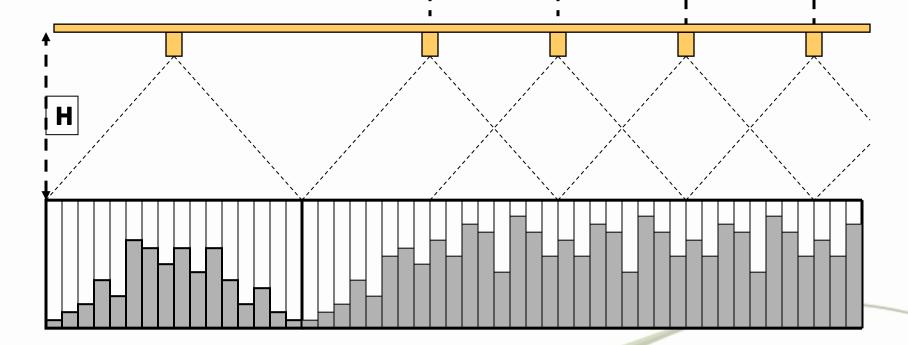

UNIFORMIDAD TRANSVERSAL: a lo largo de la barra de pulverización.

- Distribución de cada pico

- Distancia entre picos en la barra

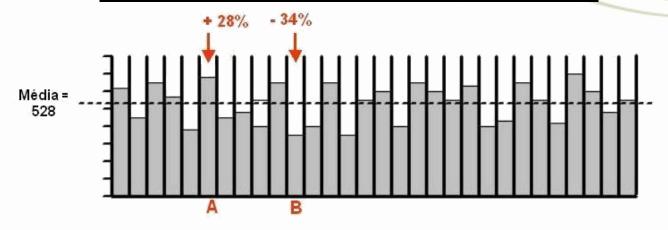
- Altura de pulverización

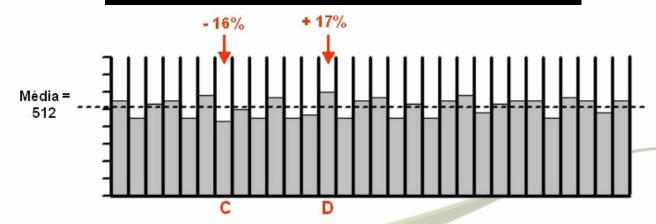
 E_2 E_2



UNIFORMIDAD TRANSVERSAL: a lo largo de la barra de pulverización.

- Distribución de cada pico
- Distancia entre picos en la barra
- Altura de pulverización

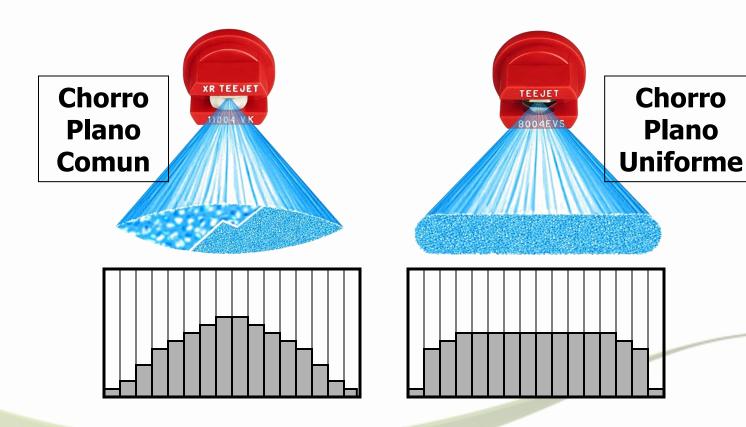


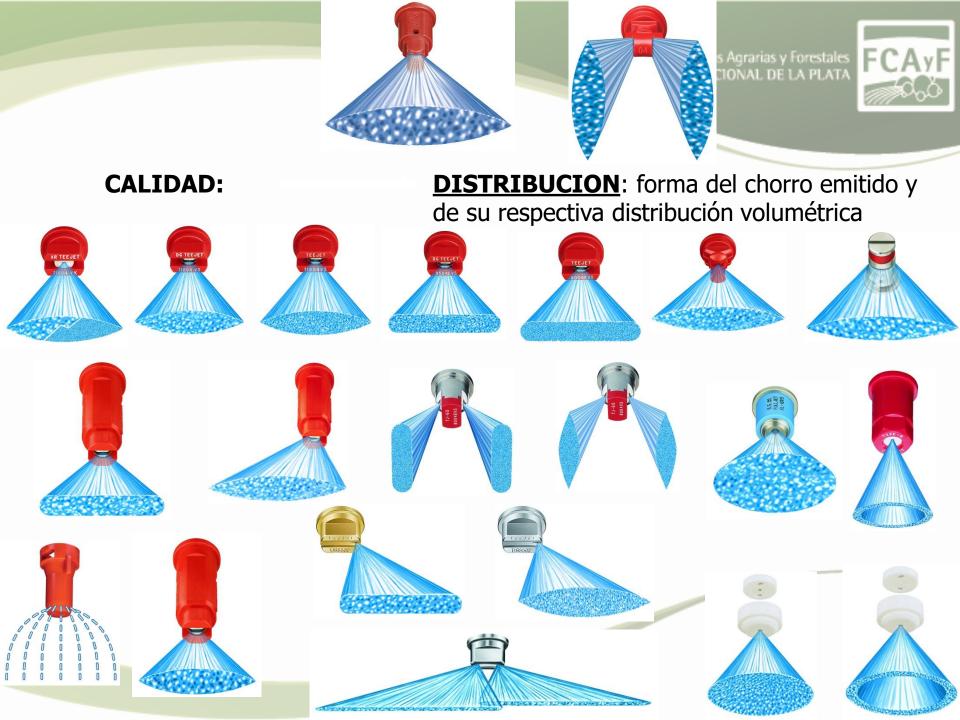


Situación 1 — Coeficiente de Variación = 20,93%

Situación 2 — Coeficiente de Variación = 10,79%

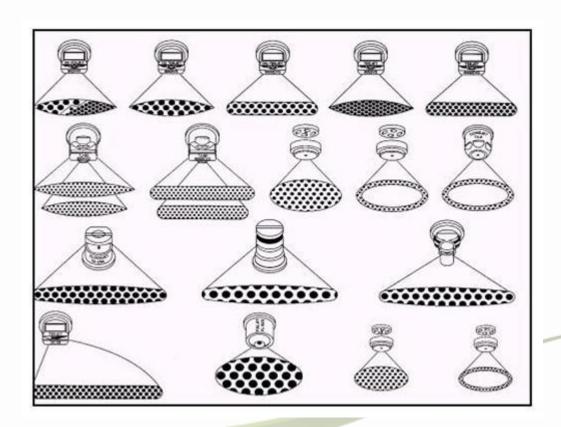
Elección de la Pastilla de Pulverización Adecuada





CALIDAD:

DISTRIBUCION: forma del chorro emitido y de su respectiva distribución volumétrica



CALIDAD:

DISTRIBUCION: forma del chorro emitido y de su respectiva distribución volumétrica

Uso de tablas del Catálogo TeeJet® (XRTeeJet®):

Caudal de 0,67 L/min

船(圓)	(1/	1/ha50 cm									
	bar	I/min	4 km/h	5 km/h	6 km/h	7 km/h	8 km/h	10 km/h	12 km/h	16 km/h	18 km/h	20 km/h
XR8001 XR11001 (100)	1.0 1.5 2.0 3.0 4.0	0.23 0.28 0.32 0.39 0.45	69.0 84.0 96.0 117 135	55.2 67.2 76.8 93.6 108	46.0 56.0 64.0 78.0 90.0	39.4 48.0 54.9 66.9 77.1	34.5 42.0 48.0 58.5 67.5	27.6 33.6 38.4 46.8 54.0	23.0 28.0 32.0 39.0 45.0	17.3 21.0 24.0 29.3 33.8	15.3 18.7 21.3 26.0 30.0	13.8 16.8 19.2 23.4 27.0
XR80015 XR110015 (100)	1.0 1.5 2.0 3.0 4.0	0.34 0.42 0.48 0.59 0.68	102 126 144 177 204	81.6 101 115 142 163	68.0 84.0 96.0 118 136	58.3 72.0 82.3 101 117	51.0 63.0 72.0 88.5 102	40.8 50.4 57.6 70.8 81.6	34.0 42.0 48.0 59.0 68.0	25.5 31.5 36.0 44.3 51.0	22.7 28.0 32.0 39.3 45.3	20.4 25.2 28.8 35.4 40.8
XR8002 XR11002 (50)	1.0 1.5 2.0 3.0 4.0	0.46 0.56 0.65 0.79 0.91	138 168 195 237 273	110 134 156 190 218	92.0 112 130 158 182	78.9 96.0 111 135 156	69.0 84.0 97.5 119 137	55.2 67.2 78.0 94.8 109	46.0 56.0 65.0 79.0 91.0	34.5 42.0 48.8 59.3 68.3	30.7 37.3 43.3 52.7 60.7	27.6 33.6 39.0 47.4 54.6
XR8003 XR11003 (50)	1.0 1.5 2.0 3.0 4.0	0.68 0.83 0.96 1.18 1.36	204 249 288 354 408	163 199 230 283 326	136 166 192 236 272	117 142 165 202 233	102 125 144 177 204	81.6 100 115 142 163	68.0 83.0 96.0 118 136	51.0 62.3 72.0 88.5 102	45.3 55.3 64.0 78.7 90.7	40.8 49.8 57.6 70.8 81.6

Uso de tablas del Catálogo TeeJet® (XRTeeJet®):

觚(圓)	8	1/	1/ha50 cm										
	bar	I/min	4 km/h	5 km/h	6 km/h	7 km/h	8 km/h	10 km/h	12 km/h	16 km/h	18 km/h	20 km/h	
XR8001 XR11001 (100)	1.0 1.5 2.0 3.0 4.0	0.23 0.28 0.32 0.39 0.45	69.0 84.0 96.0 117 135	55.2 67.2 76.8 93.6 108	46.0 56.0 64.0 78.0 90.0	39.4 48.0 54.9 66.9 77.1	34.5 42.0 48.0 58.5 67.5	27.6 33.6 38.4 46.8 54.0	23.0 28.0 32.0 39.0 45.0	17.3 21.0 24.0 29.3 33.8	15.3 18.7 21.3 26.0 30.0	13.8 16.8 19.2 23.4 27.0	
XR80015 XR110015 (100)	1.0 1.5 2.0 3.0 4.0	0.34 0.42 0.48 0.59 0.68	102 126 144 177 204	81.6 101 115 142 163	68.0 84.0 96.0 118 136	58.3 72.0 82.3 101 117	51.0 63.0 72.0 88.5 102	40.8 50.4 57.6 70.8 81.6	34.0 42.0 48.0 59.0 68.0	25.5 31.5 36.0 44.3 51.0	22.7 28.0 32.0 39.3 45.3	20.4 25.2 28.8 35.4 40.8	
XR8002 XR11002 (50)	1.0 1.5 2.0 3.0 4.0	0.46 0.56 0.65 0.79 0.91	138 168 195 237 273	110 134 156 190 218	92.0 112 130 158 182	78.9 96.0 111 135 156	69.0 84.0 97.5 119 137	55.2 67.2 78.0 94.8 109	46.0 56.0 65.0 79.0 91.0	34.5 42.0 48.8 59.3 68.3	30.7 37.3 43.3 52.7 60.7	27.6 33.6 39.0 47.4 54.6	
XR8003 XR11003 (50)	1.0 1.5 2.0 3.0 4.0	0.68 0.83 0.96 1.18 1.36	204 249 288 354 408	163 199 230 283 326	136 166 192 236 272	117 142 165 202 233	102 125 144 177 204	81.6 100 115 142 163	68.0 83.0 96.0 118 136	51.0 62.3 72.0 88.5 102	45.3 55.3 64.0 78.7 90.7	40.8 49.8 57.6 70.8 81.6	

CLASIFICACION DE LAS PULVERIZACIONES EN FUNCION DE LA CALIDAD

(*) Comportamiento relativo entre las categorias en función de las condiciones ambientales.

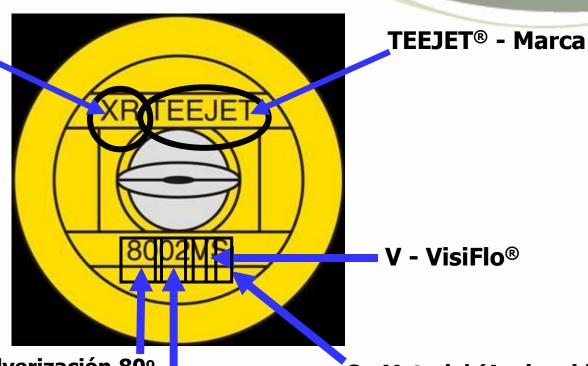
CLASIFICACION DE LAS PULVERIZACIONES (1)

The contract of the contract	Market and the second second	Section Control
CODIGO DE COLOR	DMV µm(*)	% Volumen < 141 μm(**)
ROJA	< que 182	57
NARANJA	183 – 280	20 – 57
AMARILLA	281 – 429	6 – 20
AZUL	430 - 531	3-6
VERDE	532 – 655	Menos que 3
BLANCA	> que 655	
	COLOR ROJA NARANJA AMARILLA AZUL VERDE	COLOR μm(*) ROJA < que 182 NARANDA 183 – 280 AMARILLA 281 – 429 AZUL 430 – 531 VERDE 532 – 655

^{(1) -} Hofman, V. e Wilson, J. - Choosing drift-reducing noozles. FS 919, NDES, 2003. 8p.

^{(*) -} Norma ASAE 5-572 e Kirk, USDA.

^{(**) -} Estimativa BCPC



XR - Tipo de punta

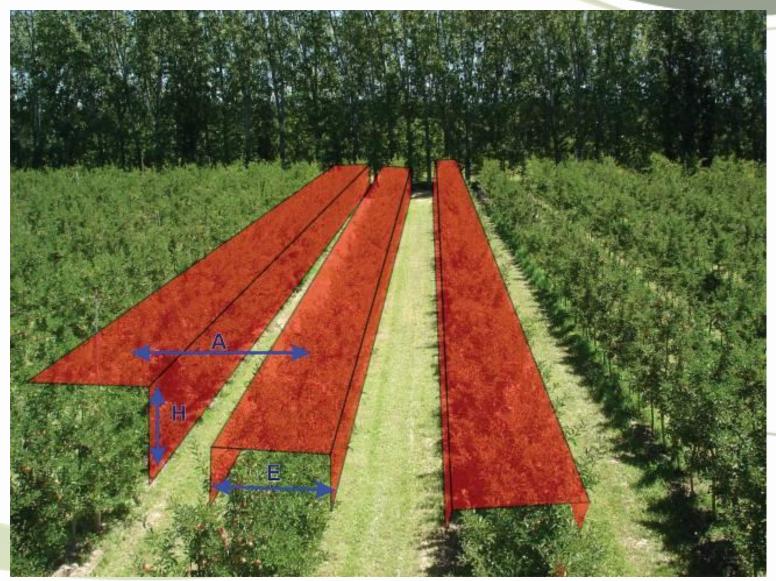
80 - Angulo de pulverización 80°

S - Material (Ac. inoxidable)


02 - Caudal de la Punta: 0.2 GPM a 40 PSI (0,8 L/min a 3 bar)

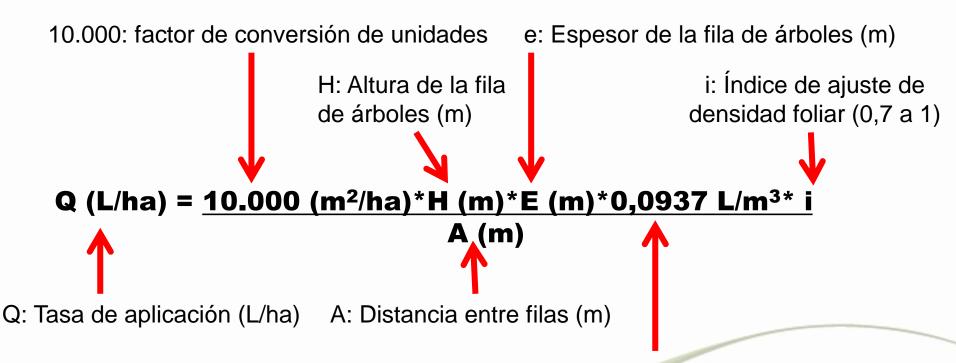
Calibración, predicción del volumen de aplicación en Arboles

Dosis ajustada al árbol



PAIS	Cultivo	Unidad utilizada para expresar la dosis
Francia	Vid	Kg/ha
Portugal, Grecia España; Italia; Suiza	Vid	g/100 L
Alemania	Vid	Kg por ha dependiendo del estado fenológico
Noruega	Frutales	Kg por100 m de fila
Alemania	Frutales	Kg por metro de altura por ha
Suiza	Frutales	Kg o L por 10.000 m ³ volumen de fila de árbol
Belgica	Frutales	Kg o L por 10.000 m² área de pared de hoja

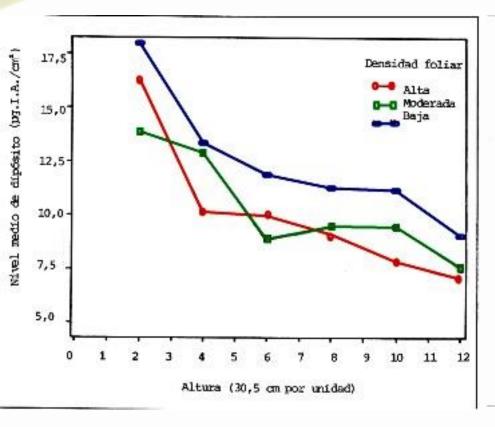
Métodos utilizados en diferentes países para determinar dosis en cultivos arbóreos – Koch H. 2007

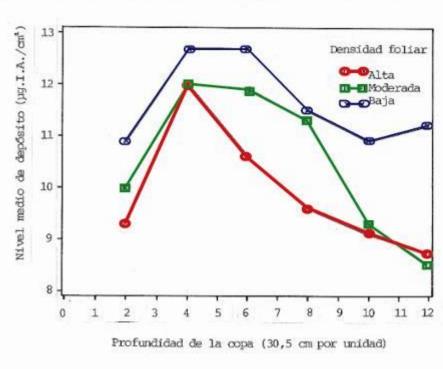

Determinación de la Tasa de aplicación de la Tasa de aplicación de la Plata

TRV tree row volume

TRV: Volumen de la fila de los árboles (m3.ha⁻¹)

Va: Volumen de líquido por unidad de volumen de árbol (L.m⁻³)


LIMITACIONES DEL TRV


"La aplicación de agroquímicos es afectada por muchas variables; ambientales, físicas y biológicas y que el cálculo del TRV no las tiene en cuenta. No obstante es una excelente guía para los productores para determinar la cantidad de materia activa a aplicar por hectárea "

(Sutton et al 1984)

CARACTERÍSTICAS DEL CULTIVO

Nivel medio de depósitos en distintas profundidades y alturas de la copa (Travis 1971)

Calidad de aplicación

Pulverizadores hidroneumáticos convencionales

Aplicaciones

- https://www.youtube.com/watch?v=ZIOcR9jxLbM
- https://www.youtube.com/watch?v=kedluA3fTzY
- https://www.youtube.com/watch?v=uT1eXf_18zE
- https://www.youtube.com/watch?v=RJ9ZkESqtU8
- https://www.youtube.com/watch?v=23XGuFsSN4o
- https://www.youtube.com/watch?v=zhGiDDS8ml8
- https://www.youtube.com/watch?v=ls-d5-qS3j8
- https://www.youtube.com/watch?v=EZi3fPiXTI8
- https://www.youtube.com/watch?v=vUzBVoBYIPY

Videos

- Nuevas tecnologías
- https://www.youtube.com/watch?v=XwqZ9fSIEMw
- https://www.youtube.com/watch?time_continue=45&v=T oiGzgJBYN0/watch?v=XwqZ9fSIEMw
- https://www.youtube.com/watch?v=RQ4HXXnAqdc
- https://www.youtube.com/watch?v=iwNK_zFYgdQ
- https://www.youtube.com/watch?v=MtWbUeQAJNc
- https://www.youtube.com/watch?v=sj4iHLk3l1g
- https://www.youtube.com/watch?v=DsINktFc0Ks