
Cantidades químicas

Claudio Cerruti Coordinador materia Química Curso de nivelación FCAyF - UNLP

Átomo: menor porción de sustancia capaz de entrar en combinación química

Cantidades químicas

- Unidad de masa atómica (u.m.a.): 1/12 de la masa de un átomo de carbono
- Peso atómico relativo (PAR): indica cuantas veces mayor que la uma es la masa de un átomo

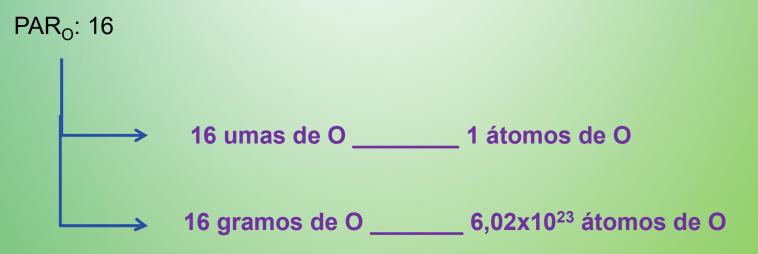
PAR _C: 12

PAR _{Mg}: 24

Elementos (Li, Cr, Pb, S)

- Dependiendo de en cual unidad se exprese el PAR, nos referiremos a cantidades diferentes de átomos
- expresado en umas nos indica la masa de un átomo del elemento considerado
- expresado en gramos nos indica la masa de 6,02x10²³ átomos del elemento considerado (1 mol de átomos)

PAR_{Ca}: 40


40 umas de Ca _____ 1 átomo de Ca

40 gramos de Ca _____ 6,02x10²³ átomos de Ca ____ 1 mol de átomos de Ca

Peso atómico absoluto (PAA): indica la masa de un átomo

Elementos (Li, Cr, Pb, S)

- expresado en umas nos indica la masa de un átomo del elemento considerado
- expresado en gramos nos indica la masa de 6,02x10²³ átomos del elemento considerado (1 mol de átomos)

Compuestos (H₂O, HNO₃, C₆H₁₂O₆)

- Unidad de masa atómica (u.m.a.): 1/12 de la masa de un átomo de carbono
- Peso molecular relativo (PMR): indica cuantas veces mayor que la uma es la masa de una molécula

PMR NO_2 : 14 + 2 x 16 = 46

Compuestos

- Dependiendo de en cual unidad se exprese el PMR, nos referiremos a cantidades diferentes de moléculas
- expresado en umas nos indica la masa de una molécula del compuesto
- expresado en gramos nos indica la masa de 6,02x10²³ moléculas del compuesto (1 mol de moléculas)

PMRco₂: 12 + 2 x 16 : 44

44 umas de CO₂ _____ 1 molécula de CO₂

44 gramos de CO₂ _____ 6,02x10²³ moléculas de CO₂ 1 mol de moléculas de CO₂

Peso molecular absoluto (PMA): indica la masa de una molécula

Compuestos

- expresado en umas nos indica la masa de una molécula del compuesto
- expresado en gramos nos indica la masa de 6,02x10²³ moléculas del compuesto (1 mol de moléculas)

 $PMR_{CON_2H_4}$: 12 + 16 + 2 x 14 + 4 x 1: 60

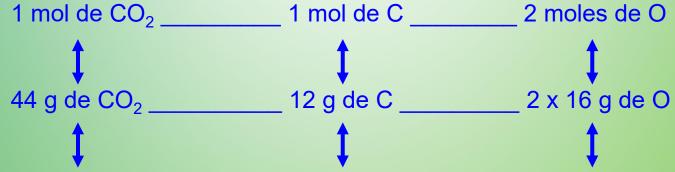
Compuestos (H2O, HNO3, C6H12O6)

Fórmula Molecular: los subíndices de la fórmula molecular indican:

 la cantidad de átomos de cada elemento contenidos en una molécula de compuesto

Ó

 la cantidad de moles de átomos de cada elemento contenidos en un mol de moléculas del compuesto


 CO_2

1 molécula CO₂ __ 1 átomo de C __ 2 átomos de O

1 mol de CO₂ ____ 1 mol de C ____ 2 moles de O

44 umas de CO₂ __ 12 umas de C __ 2x16 umas de O

6,02x10²³ moléc de CO₂ ____ 6,02x10²³ át. de C ____ 2 x 6,02x10²³ át. de O

22,4 I de CO₂ en CNPT

IMPORTANTE!

1 mol de cualquier gas en CNPT ocupa 22,4 litros CNPT: Presión = 1 atm, Temperatura = 0 °C

Composición centesimal

Indica los gramos de cada elemento contenidos en 100 g de compuesto

PMR CO₂: 44 PAR C: 12 PAR O: 16

1 mol de CO₂ ____ 1 mol de C ____ 2 moles de O

44 g de CO₂ _____ 12 g de C _____ 2 x 16 g de O 100 g de CO₂ 27,3 g de C 72,7 g de O

27,3 % de C, 72,7 % de O

Composición centesimal

Indica los gramos de cada elemento contenidos en 100 g de compuesto

PMR KNO₃: 101 PAR K: 39 PAR N: 14 PAR O: 16

38.6 % de K 13.9 % de N ዛት, 5 % de O

