1. Características y Evolución de la Mecanización Agraria

2. Armonización de conjuntos

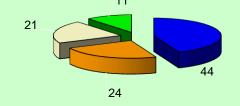
Curso de Mecanización Agraria 2013

Objetivos

- Comprender las características del Sector Agroindustrial de Maquinaria y de los procesos de Mecanización Agraria
 - Valorar la importancia del sector en la economía nacional
 - Identificar los distintos actores
 - Comprender la importancia de la mecanización en los actuales sistemas productivos
- Integrar los conocimientos del Curso de Mecánica aplicada y Conceptualizar las principales variables de la prestación tractiva en relación con los distintos diseños básicos
 - Valorar los criterios de balance de potencia para su aplicación en Armonización de conjuntos.
 - Operar con modelos y ecuaciones que permitan inferir prestación tractiva a partir de datos del tractor y el suelo.

Personal: 90000 (80% de mano de obra calificada)

Facturación año 2010


40% de participación en las economías locales

el 32 % (233 empresas) del total nacional (850 empresas)

Distribución de las fábricas por provincias (%)

- ■Santa Fe
- Córdoba
- ■Buenos Aires
- Otras

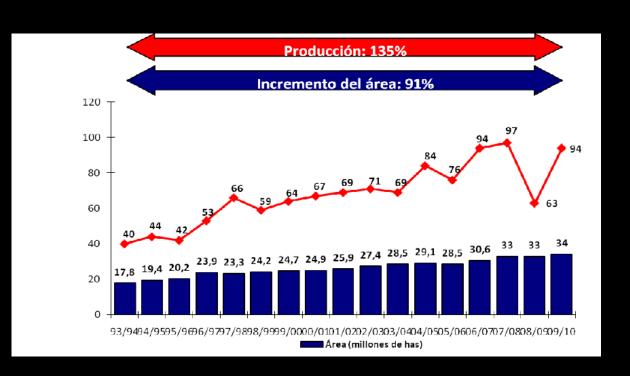
Caracterización de las empresas

- Las empresas tienen un antigüedad promedio de más de 20 años de en el rubro.
 - 1) Empresas familiares que fueron creciendo. Poseen entre 8o y 120 personas ocupadas y facturan el 40% de las ventas de la fabricación nacional.
 - 2 Empresas con más de 150 trabajadores que poseen una participación del 30% de la facturación
 - 3) El restante 30% de la facturación está representado por PyMES con menos de 50 personas empleadas
- Fuente: Bragachini y otros, 2000

Cómo son nuestras fábricas

Pintura

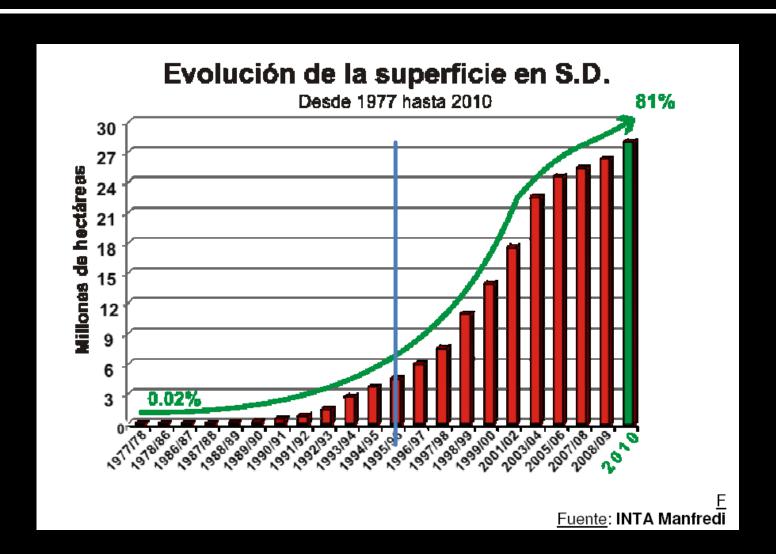
Organización

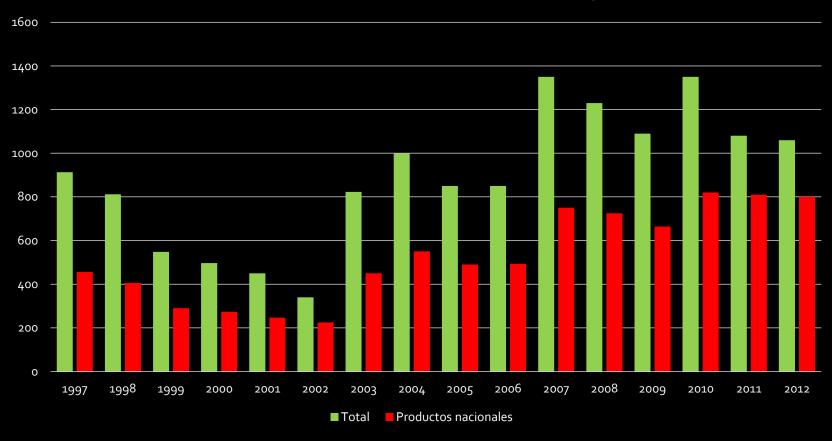

- Existe una variación muy grande entre empresas en:
 - Estructura productiva
 - Tecnología de procesos
 - Calidad de fabricación
 - Seguridad
 - Incorporación de profesionales
 - Servicios al consumidor

Evolución del sector

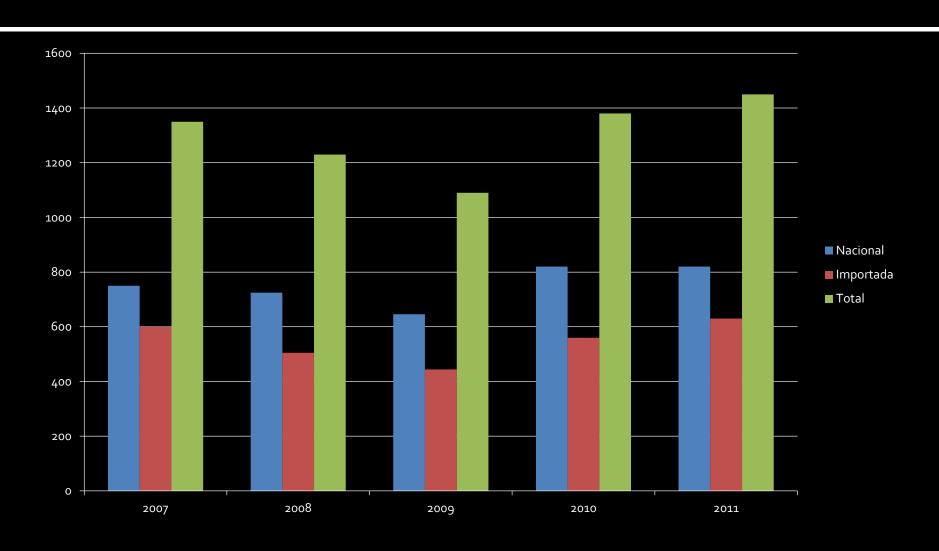
- 1878 Nicolás Schneider, en Esperanza fabrica el primer arado.
- 1925 Las primeras cortadoras y trilladoras de los hermanos Senor.
- 1929 Alfredo Rotania fabrica la primera cosechadora automotriz (en el mundo)
- 1932 Miguel Druett perfecciona la máquina aplicándole la plataforma de corte quedando así conformado el esquema actual de las cosechadoras automotrices.
- 1939/45 Mainero y Minervino iniciaron el ciclo de los primeros equipos para cosechar girasol, en el mundo.
- 1950 Vassalli y Giubergia fueron pioneros en el mundo en fabricar una cosechadora de maíz.

- 1960 Aparecen implementos de labranza especial para la conservación del suelo como Maracó en La Pampa.
- 1980 La Industria Nacional enfrenta una agresiva competencia internacional bajo condiciones adversas que la desfavorecen y junto al productor desarrolla la tecnología exigible en ese momento.
- 1990 La evolución económica Argentina impone una fuerte reconversión. Se comercializa dentro del MERCOSUR. Las fábricas se adaptan al cambio o invierten para modernizar su equipamiento. Muchas fábricas desaparecen
- **2000**
 - La Argentina comienza a exportar máquinas agrícolas y tecnologías de cultivos asociadas a las mismas
 - Se desarrollan equipos y software para efectuar "agricultura de precisión"


Evolución del área sembrada y de la producción

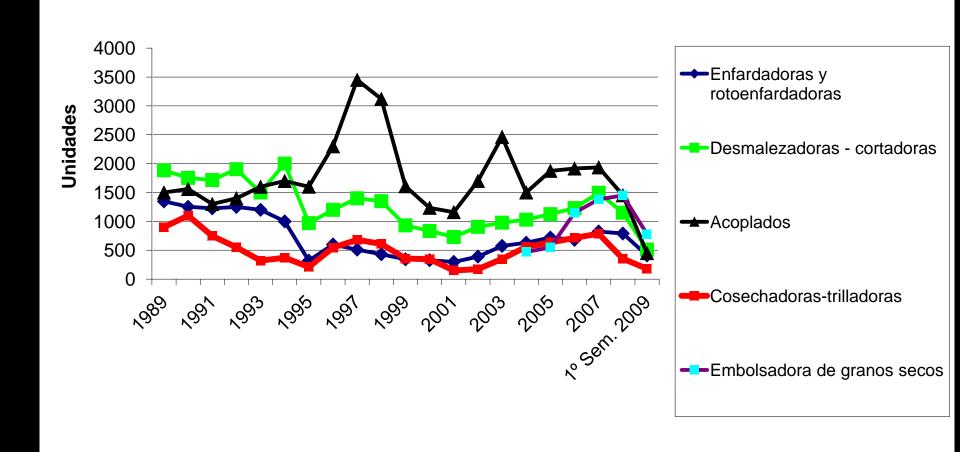

¿QUÉ IMPLICA?

- Necesidad de trabajar y procesar mayor superficie y rendimiento en el mismo tiempo
- Mayor cantidad de máquinas
- Mayor capacidad de trabajo
 - Mayor ancho
 - Mayor velocidad

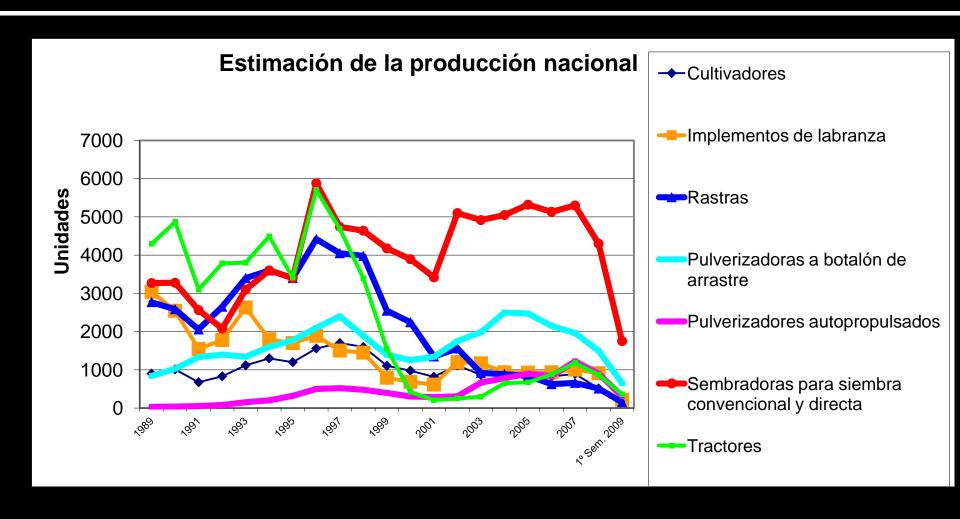

Evolución de los sistemas de labranza

Mercado Nacional en millones de U\$S

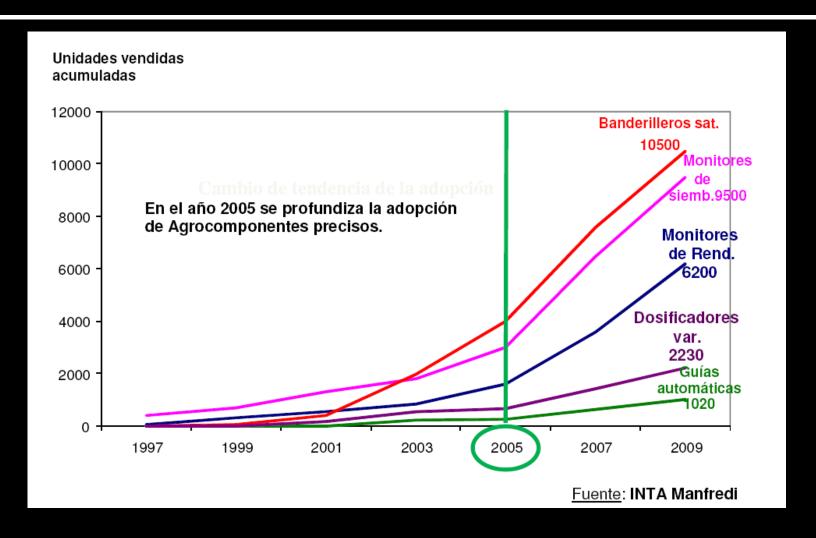
Ventas en Maquinaria Agrícola

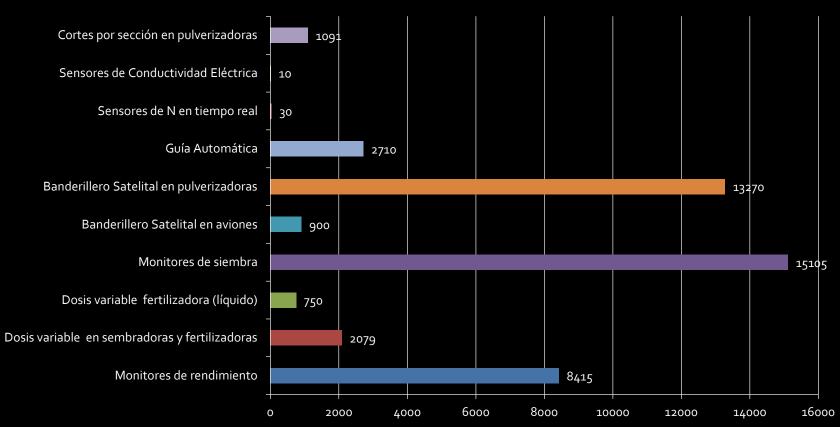


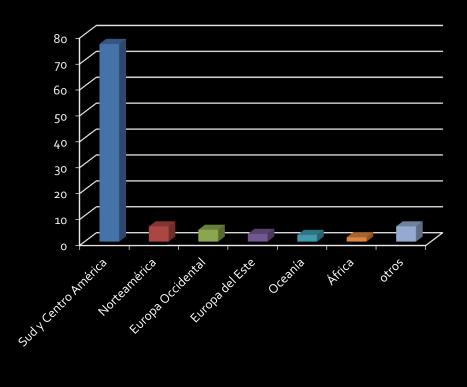
Principales máquinas fabricadas

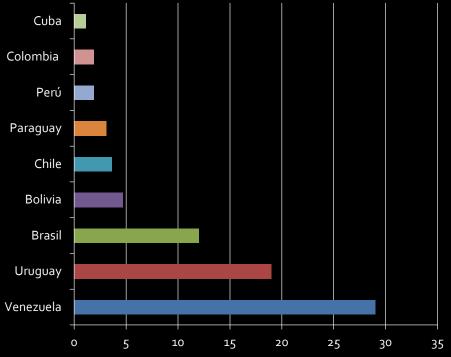

- Sembradoras
- Pulverizadoras
- Cosechadoras
- Cabezales de cosechadoras
- Embolsadoras y extractoras de granos
- Tractores
- Tolvas
- Máquinas para cosecha de forrajeras
- Acoplados
- Máquinas de labranza
- Fertilizadoras

Evolución del mercado


Estimación de la producción nacional


Evolución del mercado


Evolución de equipos para agricultura de precisión



Herramientas de agricultura de precisión año 2011

Exportaciones

Exportaciones

- Sembradoras de SD
- Embolsadoras de grano
- Extractoras de grano
- Pulverizadoras
- Cabezales maiceros y girasoleros
- Tolvas autodescargables

¿Qué se importa?

- Origen de las importaciones
 - Brasil, EEUU, Alemania, Bélgica e Italia
- Máquinas autopropulsadas
 - Tractores
 - Cosechadoras de grano
 - Cosechadoras de forraje (picadoras)

Características de la Mecanización Agraria de los próximos años

- Aumento de la capacidad de trabajo (aumento del ancho de labor)
- Aumento de la potencia en tractores y cosechadoras
- Incremento de los procesos de automatización
- Incremento de la agricultura por ambientes
- Adecuación a normas de transporte
- Mejora en las condiciones ergonómicas y en la seguridad de los operarios
- Disminución del número de operarios/ha

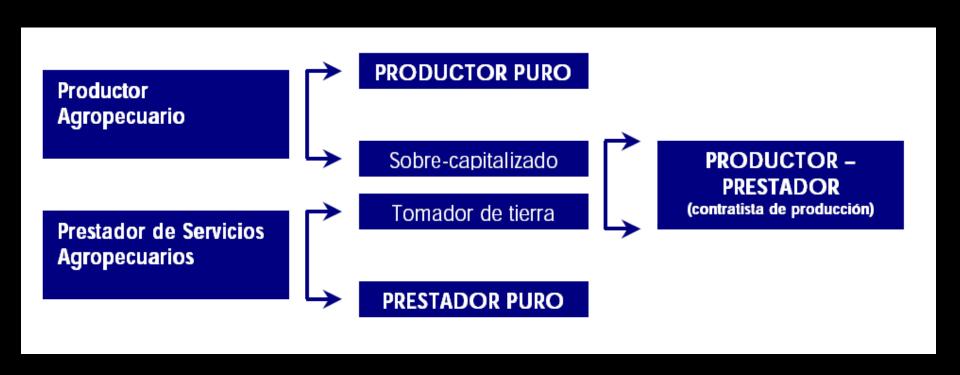
Factores de competitividad

El diseño:

- prestaciones potenciales y al rendimiento
- facilidad de operación y regulación
- comodidad y seguridad del operario

El precio:

- valores parciales de los insumos más el agregado del costo de los propios procesos fabriles.
- es relevante en la elección entre máquinas.
- el precio no se considera de manera aislado o absoluto sino ligado a la calidad


Imagen de marca:

Existe un fuerte arraigo entre el productor rural y las marcas

Repuestos y servicios técnicos:

- la disponibilidad de repuestos y asistencia técnica abarca todo el servicio post venta
 - El fabricante
 - El concesionario local.

Actores productivos vinculados a la mecanización agraria

Cuál es la participación del contratista en la producción?

Participación del Contratista
Rural en ARGENTINA

Cosecha de Granos 90%

Pulverización 70%

Siembra de Granos 60%

Producción de Granos 72%

Incremento anual 2.0%

Participación del Contratista en ARGENTINA	
Henificación	80 %
Picado de Forraje	95 %
Forestación	100 %

15.000 a 20.000 contratistas

Características del mercado y de los procesos de mecanización

- Las políticas nacionales y los precios internacionales inciden sobre la industria de máquinas agrícolas y las características de la mecanización
- La industria sufre las fuertes variaciones de la rentabilidad del agro a nivel nacional
- La exportación es una alternativa para estabilizar la producción y las ventas pero requiere
 - Mejoras en la tecnología y procesos productivos
 - Adecuación a normas de procesos
 - Adecuación a normas de los productos
- El mercado interno de implementos es abastecido por la industria nacional
- El mercado nacional de tractores y cosechadoras tiene una fuerte presencia de empresas multinacionales

- Existen distintos actores productivos
 - El contratismo ha crecido fuertemente en los últimos años
 - Se redujo la cantidad de pequeños y medianos productores
- Se busca aumentar la eficiencia y competitividad a partir de disminución de costos con predominancia del contratismo
- El contratismo conlleva
 - Aumento de la capacidad de trabajo
 - Aumento de la inversión en tecnología
 - Necesidad de control
- La agricultura de precisión asiste al
 - control de los procesos
 - aumento de la eficiencia

¿Qué es armonizar conjuntos?

- Obtener del tractor y del equipo la máxima eficiencia
- Tractor
 - La mayor eficiencia de tracción global
- Implemento:
 - la mayor capacidad de trabajo compatible con los objetivos
 - Los menores costos operativos

Como mejorar la prestación del tractor

- maximizar la eficiencia en el uso de combustible del motor y del tren de transmisión
- maximizar la ventajas tractivas de los distintos diseños y dispositivos de tracción
- Seleccionar la velocidad de desplazamiento óptima para un determinado conjunto tractor implemento

el rendimiento del tractor está influenciado por

- Los mecanismos y elementos de tracción (diseño tractivo)
- Las condiciones del suelo
- Tipo de trabajo que realiza el tractor
- La configuración del tractor (Brixius, 1987)

Capacidad de paso

- Diseño del tractor
- Potencia del tractor
- Rendimiento de tracción global
- Rendimiento de tracción neto
- Peso del tractor
- Presión en el área de contacto rueda suelo
- Despeje o luz libre
- Batalla
- Trocha
- Maniobrabilidad

Parámetros de caracterización del tractor

- Potencia
- Peso
- Relación peso / potencia
- Escalonamiento de marchas
- Valor numérico de la rueda

Parámetros de prestación tractiva

- Cociente de reducción de velocidad =Va/Vt (patinamiento) comúnmente expresado en porcentaje.
- Coeficiente de resistencia a la rodadura (k).
- Coeficiente de tracción neta (t), T / peso.
- Eficiencia de tracción, generalmente considerado como porcentaje.(T/F) *(Va/Vt)
- Rendimiento de tracción bruto (ŋTG).
 (Nb/Nm)

Diseño del tractor

¿Qué es necesario compatibilizar?

- La potencia requerida por la máquina
- La potencia ofrecida por el tractor
- El esfuerzo de tracción requerido por el implemento
- La capacidad de tracción que es capaz de ofrecer un tractor en un suelo dado
- La velocidad de trabajo de la máquina
- Las velocidades de trabajo que ofrece el tractor

¿Que implica un procedimiento de armonización?

- Partir de una adecuada planificación de actividades
- Conocer la superficie a trabajar y el tiempo disponible para hacerlas
- Ambas variables determinan la Capacidad de Trabajo con que es necesario contar
- CT= Ancho de trabajo*Velocidad de avance

Capacidad de trabajo: ¿ancho o velocidad?

- La tendencia en la Argentina es a aumentar el ancho de labor
- El rango de velocidad está limitado por las características de la labor
- Un aumento de velocidad implica un aumento en el requerimiento de potencia
- Un aumento de ancho de labor implica:
 - un aumento del esfuerzo de tracción y como consecuencia un incremento del peso del tractor en trabajos de labranza
 - Un aumento del requerimiento de potencia a la TPP, con mayor Par Motor demandado en el motor, para máquinas accionadas por la TPP

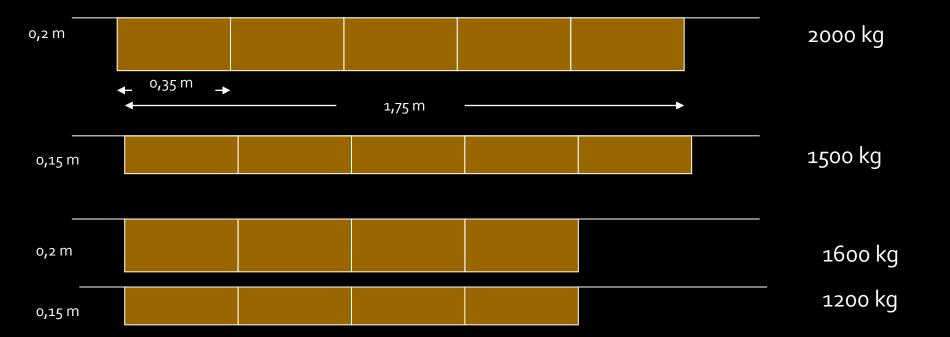
Ancho de trabajo del equipo

- Número de cuerpos
- Esfuerzo de tracción por cuerpo
- Para conocer el esfuerzo de tracción es necesario
 - Contar con datos de ensayos
 - Poseer información del fabricante
 - Tener un dinamómetro
- Si no se tiene un dinamómetro hay que tratar de predecir cuál será el esfuerzo de tracción por cuerpo.

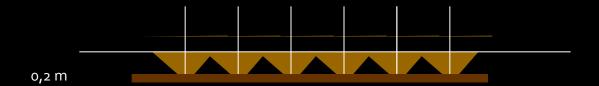
¿Qué ocurre cuando un conjunto no es armónico?

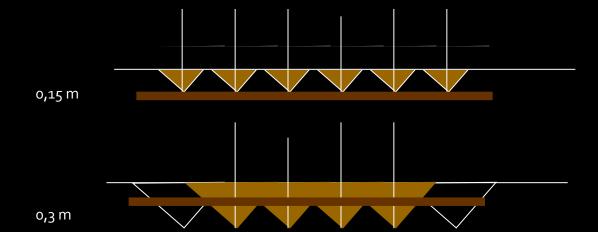
- El tractor es "demasiado grande" para el equipo
 - ¿Me sobra potencia?
 - ¿Me sobra peso?
- El tractor es "demasiado chico" para el equipo
 - ¿Me falta potencia?
 - ¿Me falta peso?

TRACTOR GRANDE O EQUIPO CHICO?


¿EQUIPO GRANDE O TRACTOR CHICO?


- Aumento de la velocidad de avance, si la labor lo permite.
- Coloco una marcha más rápida y disminuyo el régimen del motor si es posible
- Aumento el ancho de trabajo de la máquina, si es posible
- Cambio el equipo, cuando disponga de dinero


- Disminuyo el ancho de trabajo, si es posible
- Disminuyo la profundidad de trabajo, si no es perjudicial para la labor y los objetivos planteados
- Disminuyo la velocidad si no perjudica la labor


Resistencia específica al laboreo (coeficiente de labranza)

- R.E.=T/A
- T= esfuerzo de tracción= 2000 Kg
- A= área trabajada o frente de labor = 3500 cm2
- \circ 0,57 kg/cm² =56,038 kN/m²

Predicción tractiva de carácter general

Se integran las diferentes ecuaciones básicas

Se usan los mismos conceptos aplicados a los diferentes diseños

Predicción de la capacidad de tracción

Para un determinado tractor en una condición de suelo la capacidad de traccionar, arrastrar es

Una función del peso adherente del tractor

Capacidad de tracción

- Depende de un conjunto de factores
 - Diseño tractivo
 - Potencia para una determinada velocidad
 - Neumáticos utilizados
 - ancho
 - diámetro
 - características constructivas
 - Peso del tractor
 - Tipo de suelo
 - Estado del terreno

Estimación del peso adherente

- Peso adherente en tractores de tracción simple
 2WD
 - Luis Márquez
 - Q adh \cong 0,85 x Qt
 - Zoz (1972):
 - Q1 +(T x 0.25)= Aperos de arrastre
 - Q1 +(T x 0.45)= Aperos semisuspendidos
 - Q1 +(T x 0.65)= Aperos suspendidos

Peso adherente en tractores doble tracción FWA y 4WD

Q adh **≅ 1,1QT**

Predicción de la capacidad de tracción

- En relación al diseño del tractor
- Es mayor en general cuanto mayor sea la superficie de apoyo del tractor
 - 2WD < FWA < 4WD</p>
- Potencia en la barra de tiro de un tractor:
- Nb = Tracción x Velocidad de avance real
- Nb = Rendimiento de tracción (global) Nm

Preguntas frecuentes

- ¿A qué velocidad puede desplazarse el conjunto?
- ¿Cuál es la máxima velocidad de avance a la que puede desplazarse el conjunto?
- ¿A qué velocidad de avance el tractor alcanzará su máxima eficiencia tractiva?

- ¿Cuál es el esfuerzo de tracción que dispongo a una determinada velocidad?
- ¿Dispongo del esfuerzo de tracción necesario para arrastrar un determinado equipo?
- ¿Cuál es la fuerza que dispongo a la velocidad que el tractor alcanza la máxima eficiencia tractiva global?
- ¿Qué esfuerzo de tracción me permite realizar eficientemente este tractor?

- ¿Qué peso adherente necesito para efectuar un determinado esfuerzo de tracción?
- ¿Cuál es el peso adherente necesario para alcanzar la máxima eficiencia tractiva a una velocidad establecida?
- ¿Dispongo del Par Motor necesario para efectuar un cierto esfuerzo de tracción?
- TODAS LAS RESPUESTAS DEBEN ENCONTRAR UNA JUSTIFICACIÓN CONCEPTUAL, FUNDAMENTADA Y ACOMPAÑADA CON CÁLCULOS NUMÉRICOS CUANDO CORRESPONDA

Nb y rendimiento de tracción

- ¿Las pérdidas de potencia son similares para los diferentes diseños tractivos?
- ¿Todos los diseños alcanzan la misma eficiencia tractiva global?
- ¿Cómo inciden las distintas pérdidas de potencia, fijas y variables, en cada diseño tractivo?

- Ecuaciones básicas y valores frecuentes que permiten contestar la totalidad de las preguntas.
- Relacionadas al diseño del tractor
- ŋTG= Nb/Nm
- Nb=TxVr
- Nm= PM x régimen
- Aspectos de diseño del tractor
 - Convencional ŋTG= 0,6
 - FWA ŋTG= 0,67-0,7
 - 4WD ŋTG= 0,75-0,8

- En función del diseño del Tractor
- T= Nb/Vr
- T= Nm x ŋTG/ Vr
- En función de la relación rueda suelo
- $= \underline{\mathsf{T}} = \mathbf{Qa} \times \mathsf{t}_{(\%\mathsf{pat})}$
- T= F-R
- En función de los parámetros de prestación del motor, caja de cambios y diseño del tractor
- F= (PM x rt x nt)/r1)
- R= Qa x K
- K = 1,2 / Cn + 0,04
- $T = (PM \times rt \times \eta t)/r1) Qa \times K$
- Vr = Vt x (1-coef pat)
- % Pat = (Vt-Vr)/Vt * 100

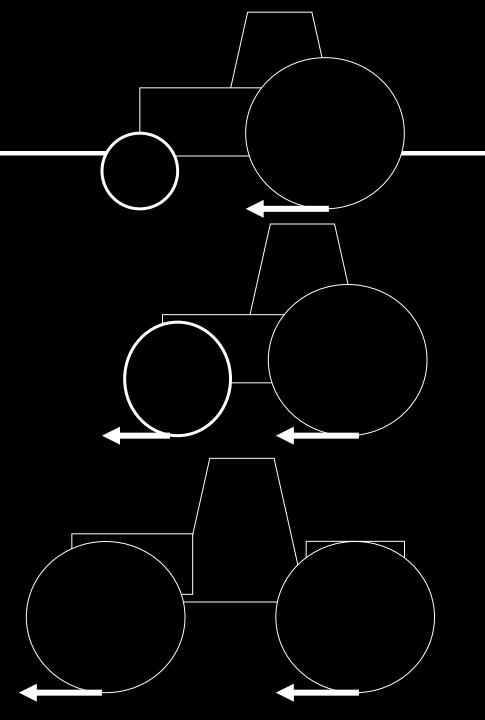
• <u>Nm x ηTG</u> = QA x t

A partir de ello:

- Vr= Nm x ηTG QA x t
- QA= Nm xηTG Vr x t

¿Cómo se predice?

Diseño de tractor


Convencional ŋTG= 0,6

FWA
nTG= 0,67-0,7

- En la zona existe un FWA de 140 CV y 7300 kg de peso que lleva un descompactador de 6 cuerpos
- 98 CV en la barra de tiro
- 98CV*75mkg/s/CV=7350 mkg/s
- 7350 mkg/s/2 m/s = 3675 kg
- Cuántos cuerpos está tirando? 6
- 600 kg/ cuerpo, aproximadamente

Quiero comprar 8 cuerpos

- 4800 kg de esfuerzo de tracción
- 128 CV de potencia en la barra
- 191 CV en el motor en un FWA
- 170 CV en el motor en un 4WD
- 213 CV en el motor en un 2WD
- Si la condición tractiva es buena

Qa= 9600 kg y Qt= 11300 kg 7900 Eje trasero y 3400 Eje delantero

Qa= 9600 kg y Qt= 8730 4800 Eje trasero y 3930 Eje delantero

Qa= 8730 kg y Qt=7930 4800 Eje delantero y 3200 Eje trasero

Armonización de conjuntos

- El peso es el principal parámetro responsable de la capacidad de tracción.
- Las relaciones de estado mecánico del suelo (IC) peso (Qa) y rodado (diámetro y ancho) determinan la capacidad de paso del tractor.
- La potencia (PMnom*n) determina la velocidad (marcha) máxima a la cual se desplazará el conjunto
- El PMnom y n determinan para cada marcha la fuerza disponible en el eje de la rueda y la velocidad de avance teórica
- Existe un rango muy estrecho de velocidad en el que un diseño de tractor alcanza ηTG máx que depende de la relación Q/N

- Si conozco el Qa puedo predecir la fuerza que dispongo en la barra de tiro
- Si conozco la potencia en el motor puedo predecir la potencia en la barra
- Si conozco la potencia en la barra puedo calcular las relaciones entre T y Vr
- Si conozco el requerimiento de potencia en la barra de tiro puedo calcular la potencia necesaria del motor
- Si conozco la Nb requerida y la velocidad de trabajo puedo calcular el esfuerzo requerido
- Si conozco el T puedo predecir el Qa y el Q necesario para traccionar el conjunto